
Embedded IDE Link™ 4
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded IDE Link™ User’s Guide

© COPYRIGHT 2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2010 Online only New for Version 4.1 (Release 2010a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Overview . 1-2
Overview . 1-2
Key Features . 1-2
Introduction . 1-3
Generating IDE Projects . 1-4
Generating Makefiles . 1-4
Automating IDE Tasks . 1-4
Verifying Models Running on Targets 1-5
Optimizing Models . 1-5

Using this Guide . 1-7

Installation and Configuration . 1-9

Preparing Models for Embedded Deployment

2
Setting Target Preferences . 2-2
What are Target Preferences Blocks? 2-2
Locating a Target Preferences Block 2-3
Configuring a Target Preferences Block for a Supported
Processor . 2-3

Adding a Target Preferences Block to Your Model 2-4
Examples of Configuring Target Preferences 2-5

Setting Configuration Parameters for Embedded IDE
Link . 2-6
What are Configuration Parameters? 2-6
Setting Model Configuration Parameters 2-6

iii

Working with Block Libraries . 2-15

Simulink Models and Targeting . 2-16
Creating Your Simulink Model for Targeting 2-16
Blocks to Avoid in Your Models . 2-17

Generating IDE Projects

3
Introducing Project Generator . 3-2

Project Generation . 3-3

Schedulers and Timing . 3-4
Configuring Models for Asynchronous Scheduling 3-4
Cases for Using Asynchronous Scheduling 3-5
Using Scheduling Blocks to Control Code Execution 3-7
Comparing Synchronous and Asynchronous Interrupt
Processing . 3-7

Using Synchronous Scheduling . 3-9
Using Asynchronous Scheduling . 3-10
Multitasking Scheduler Examples . 3-10

Project Generator Tutorial . 3-23
Creating the Model . 3-24
Adding the Target Preferences Block to Your Model 3-24
Specify Configuration Parameters for Your Model 3-26

Setting Code Generation Parameters for Processors . . 3-29

Using Custom Source Files in Generated Projects 3-32
Preparing to Replace Generated Files With Custom
Files . 3-32

Replacing Generated Source Files with Custom Files When
You Generate Code . 3-34

iv Contents

Optimizing Embedded Code with Target Function
Libraries . 3-36
About Target Function Libraries and Optimization 3-36
Using a Processor-Specific Target Function Library to
Optimize Code . 3-38

Process of Determining Optimization Effects Using
Real-Time Profiling Capability . 3-39

Reviewing Processor-Specific Target Function Library
Changes in Generated Code . 3-40

Reviewing Target Function Library Operators and
Functions . 3-42

Creating Your Own Target Function Library 3-42

Model Reference . 3-43
How Model Reference Works . 3-43
Using Model Reference . 3-44
Configuring processors to Use Model Reference 3-46

Generating Makefiles

4
Using Makefiles to Generate and Build Software 4-2
Overview . 4-2
Configuring Your Model to Use Makefiles 4-2
Choosing an XMakefile Configuration 4-3
Building Your Model . 4-5

Making an XMakefile Configuration Operational 4-6

Example: Creating an XMakefile Configuration for the
Intel Compiler . 4-7
Overview . 4-7
Create a Configuration . 4-7
Modify the Configuration . 4-9
Test the Configuration . 4-12

XMakefile User Configuration Dialog Box 4-17
Active . 4-17
Make Utility . 4-19

v

Compiler . 4-20
Linker . 4-21
Archiver . 4-21
Pre-build . 4-22
Post-build . 4-23
Execute . 4-23
Tool Directories . 4-24

Verifying Generated Code

5
What Is Verification? . 5-2

Verifying Generated Code via Processor-in-the-Loop . . 5-3
What is Processor-in-the-Loop? . 5-3
Using the Top-Model PIL Approach 5-5
Using the PIL Block Approach . 5-6
Definitions . 5-8
Other Aspects of PIL . 5-9
PIL Issues and Limitations . 5-9

Profiling Code Execution in Real-Time 5-10
Overview . 5-10
Profiling Execution by Tasks . 5-11
Profiling Execution by Subsystems 5-13

System Stack Profiling . 5-18
Overview . 5-18
Profiling System Stack Use . 5-20

Block Reference

6
Block Library: idelinklib_common 6-2

vi Contents

Blocks — Alphabetical List

7

Function Reference

8
Setup . 8-2

Constructor . 8-3

File and Project Operations . 8-4

Processor Operations . 8-5

Debug Operations . 8-6

Data Manipulation . 8-7

Status Operations . 8-8

Grouped by IDE . 8-9
Altium TASKING . 8-9
Analog Devices™ VisualDSP++ . 8-9
Eclipse IDE . 8-11
Green Hills® MULTI . 8-12
Texas Instruments Code Composer Studio 8-14

vii

Functions — Alphabetical List

9

Configuration Parameters

10
Embedded IDE Link Pane . 10-2
Overview . 10-4
Build format . 10-5
Build action . 10-7
Overrun notification . 10-10
Function name . 10-12
PIL block action . 10-13
Configuration . 10-15
Compiler options string . 10-17
Linker options string . 10-19
System stack size (MAUs) . 10-21
System heap size (MAUs) . 10-23
Profile real-time execution . 10-24
Profile by . 10-26
Number of profiling samples to collect 10-28
Maximum time allowed to build project (s) 10-30
Maximum time allowed to complete IDE operations (s) . . . 10-32
Export IDE link handle to base workspace 10-33
IDE link handle name . 10-35
Source file replacement . 10-36

Index

viii Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Using this Guide” on page 1-7

• “Installation and Configuration” on page 1-9

1 Getting Started

Product Overview

In this section...

“Overview” on page 1-2

“Key Features” on page 1-2

“Introduction” on page 1-3

“Generating IDE Projects” on page 1-4

“Generating Makefiles” on page 1-4

“Automating IDE Tasks” on page 1-4

“Verifying Models Running on Targets” on page 1-5

“Optimizing Models” on page 1-5

Overview
Embedded IDE Link™ connects MATLAB® and Simulink® with embedded
software development environments. Embedded IDE Link lets you generate,
build, test, and optimize embedded code for prototyping or production. It
automates debugging, project generation, and verification of object code
executing on an embedded processor or on the instruction set simulator
provided by your IDE. You can reuse MATLAB code or Simulink models as a
test bench for Processor-in-the-Loop testing of manually written or generated
code.

Key Features

• Automates software debugging, verification, and analysis using MATLAB
and Simulink to assess code generated automatically or manually

• Enables processor-in-the-loop (PIL) testing of target-compiled object code
by reusing your Simulink model as an interactive embedded software test
bench

• Provides profiling capabilities for real-time execution and stack usage plus
custom cache configuration and memory mapping for some IDEs

1-2

Product Overview

• Provides target-specific code optimization libraries with customization
capabilities

• Generate a complete standalone project or a target compiled library from
your model for execution on embedded processors

• Facilitates transition from your modeling environment to code coverage
structural analysis, MISRA C code checking, and additional analyses
provided by your IDE

• Supports IDEs and processors from third-party vendors such as Altium™,
Analog Devices™, ARM®, Freescale™, Green Hills Software™, Infineon®,
Renesas®, STMicroelectronics®, and Texas Instruments®

Introduction
You can use Embedded IDE Link™ to build software for embedded systems
from Simulink® models via the following IDEs:

• Altium® TASKING®

• Analog Devices™ VisualDSP++®

• Eclipse™

• Green Hills® MULTI®

• Texas Instruments’ Code Composer Studio™

Embedded IDE Link:

• Can generate makefiles, which you can use to build software automatically
without using an IDE.

• Can generate software for operating systems such as Linux and Windows.

• Includes a Project Generator component that can build software
automatically via IDEs and load it onto the target.

• Includes an Automation Interface component, which is a MATLAB API you
can use to automate complex tasks via MATLAB scripts.

• Provides tools for verification and optimization activities.

1-3

1 Getting Started

Generating IDE Projects

• Automated project-based build process

Automatically create and build projects for code generated by the Real-Time
Workshop® or Real-Time Workshop® Embedded Coder™ products.

• Highly customizable code generation

Use Embedded IDE Link software with any Real-Time Workshop System
Target File (STF) to generate target-specific and optimized code.

• Highly customizable build process

Support for multiple IDEs provides a route to many different target
hardware platforms.

• Automated download and debugging

Debug generated code in the IDE, using either the instruction set simulator
or real hardware.

Generating Makefiles

• Automated makefile-based build process

Automatically create makefiles and build code generated by the Real-Time
Workshop or Real-Time Workshop Embedded Coder products.

• Highly customizable code generation

Use Embedded IDE Link software with any Real-Time Workshop System
Target File (STF) to generate target-specific and optimized code.

• Highly customizable build process

Support for multiple software build toolchains provides a route to many
different target hardware platforms.

• New software build toolchains

Create profiles to generate makefiles for new software toolchains.

Automating IDE Tasks

• Provides a MATLAB® API for automating complex tasks in the IDE.

1-4

Product Overview

Automate complex tasks in the IDE by writing MATLAB scripts to
communicate with the IDE.

For example, you could

- Automate project creation, including adding source files, include paths,
and preprocessor defines.

- Configure batch building of projects.

- Launch a debugging session.

Verifying Models Running on Targets

• Processor-in-the-loop (PIL) cosimulation

Verify generated code running in an instruction set simulator or real target
environment.

• C Code Coverage

Use C code instruction coverage metrics during PIL cosimulation to refine
test cases.

• Execution Profiling

Use execution profiling metrics during PIL cosimulation to establish the
timing requirements of your algorithm.

• Stack Profiling

Use stack profiling metrics for PIL cosimulation or real-time applications
to verify the amount of memory allocated for stack usage is sufficient.

• Bidirectional Traceability Between Model and Code

Navigate to and from the generated code for a given Simulink block.

Optimizing Models

• Compiler / Linker Optimization Settings

Use Template Projects to control compiler and linker optimization settings.

• Target Memory Placement / Mapping

Use Template Projects to configure the target memory map.

1-5

1 Getting Started

• Execution Profiling

Use execution profiling during PIL cosimulation to guide optimization of
your algorithms.

• Stack Profiling

Use stack profiling metrics for PIL cosimulation or real-time applications
to optimize the amount of stack memory required for an application.

1-6

Using this Guide

Using this Guide
The Embedded IDE Link product works with a number of IDEs. The
structure of this documentation provides both general product information,
and information that applies to specific IDEs.

Note It is important for you to understand the documentation structure so
you can find both the general and the specific information you need.

In the Embedded IDE Link book, the Getting Started and User Guide
sections provide general information. The IDE-specific information is located
in the Supported IDEs sections.

The Functions section presents all of the functions, categorized by type and
by IDE.

1-7

1 Getting Started

Four of the five sections under Supported IDEs contain documentation for
previous stand-alone products. They are:

• For Altium TASKING used to be the documentation for Embedded IDE
Link TS.

• For Analog Devices VisualDSP++ used to be the documentation for
Embedded IDE Link VS

• For Green Hills MULTI used to be the documentation for Embedded
IDE Link MU

• For Texas Instruments Code Composer Studio used to be the
documentation for Embedded IDE Link CC

We are in the process of refactoring these four sections.

Note If you are using the TASKING IDE, only refer to the content in For
Altium TASKING. We have not incorporated this content into the Embedded
IDE Link Getting Started and User’s Guide sections.

1-8

Installation and Configuration

Installation and Configuration
For installation and configuration instructions, including software
requirements, see the following topic for your IDE:

• Altium TASKING: “Getting Started”

• Analog Devices VisualDSP++: “Getting Started”

• Eclipse IDE: “Getting Started”

• Green Hills MULTI: “Getting Started”

• Texas Instruments™Code Composer Studio™: “Getting Started”

1-9

1 Getting Started

1-10

2

Preparing Models for
Embedded Deployment

• “Setting Target Preferences” on page 2-2

• “Setting Configuration Parameters for Embedded IDE Link” on page 2-6

• “Working with Block Libraries” on page 2-15

• “Simulink Models and Targeting” on page 2-16

2 Preparing Models for Embedded Deployment

Setting Target Preferences

In this section...

“What are Target Preferences Blocks?” on page 2-2

“Locating a Target Preferences Block” on page 2-3

“Configuring a Target Preferences Block for a Supported Processor” on
page 2-3

“Adding a Target Preferences Block to Your Model” on page 2-4

“Examples of Configuring Target Preferences” on page 2-5

The following IDE’s and processor families use target preferences blocks. The
information in this section applies to them:

• Texas Instruments Code Composer Studio, C2000™, C5000™, and C6000™

• Analog Devices VisualDSP++®, and Blackfin®

• Eclipse IDE

• Green Hills MULTI®

The following IDE’s and processor families do not use target preferences
blocks:

• Freescale MPC5xx

• Altium TASKING

• Infineon C166®

The information in this section does not apply to them.

What are Target Preferences Blocks?
A target preferences block describes the environment for which you are
generating code. The block includes information about the processor,
hardware settings, operating system, memory mapping, and code generation
features. The Real-Time Workshop, Embedded IDE Link, and Simulink
products use this information to generate code from your model.

2-2

Setting Target Preferences

Locating a Target Preferences Block
Target preferences blocks are located in:

• The Target Support Package™ block libraries for Supported Processors.

• The Embedded IDE Link block libraries for Supported IDEs.

To find a target preferences block:

• Use the search feature in the Simulink Library Browser.

• Browse the block libraries for your processor or IDE.

You can identify a target preference block by its board icon and label. The
label includes the processor name or “Custom Board”. For example:

Configuring a Target Preferences Block for a
Supported Processor
Before you can generate code for a model, your model must contain a target
preferences (TP) block.

If you are using a supported processor, and a preconfigured TP block is not
available from Target Support Package block libraries, configure a TP block
for your processor.

To configure a TP block for a supported processor:

1 Open the block library for your IDE.

2 Copy the Custom Board block to your model.

3 Open the Custom Board block.

2-3

2 Preparing Models for Embedded Deployment

4 Select your target processor from the Processor parameter, verify the
default settings, and click OK. This action imports the appropriate default
settings and applies them to the model.

5 In your model, edit the label of the TP block with the name of your
processor.

To make reusing the TP block easier:

1 In your model, select File > New > Library.

2 Copy your new TP block to the library.

3 Save the library in your default Current Folder in MATLAB.

When you need the block again, open the library by entering the library name
on the MATLAB command line.

Adding a Target Preferences Block to Your Model
Before you can generate code for a model, your model must contain a target
preferences (TP) block.

To add a TP block to your model:

1 Copy a TP block from a block library to your model, or create one, as
described in “Configuring a Target Preferences Block for a Supported
Processor” on page 2-3.

2 Click Yes if you get a dialog box that asks whether to “set the model
configuration parameters to the default values”. For example:

This action applies the appropriate default settings for your IDE and
processor to the Configuration Parameters dialog box.

2-4

Setting Target Preferences

Clicking No dismisses the dialog box and does not set the parameters. If
the configuration parameters are incorrect, the software will generate error
messages when you generate code . For more information, see “Setting
Configuration Parameters for Embedded IDE Link” on page 2-6.

3 Open the TP block, verify the default settings, and click OK. This action
applies the appropriate default settings to the model.

Note Your model must contain only one TP block.

Other tips for using TP blocks:

• The TP block stands alone. It does not connect to other blocks.

• To generate code for a model, place the TP block at the top level of your
model.

• To generate code for a subsystem, place the TP block at the subsystem
level of your model.

• For detailed information about the TP block parameters, see Target
Preferences/Custom Board.

Examples of Configuring Target Preferences
There is no generic procedure for configuring a target preferences block.
Setting the Processor parameter applies the appropriate default for a
specific processor.

You typically reconfigure TP to achieve a specific purpose. For example:

• “Configuring a Target Preferences Block for a Supported Processor” on
page 2-3

• “Generating Code for Any C64x+™ Processor or Board”

2-5

2 Preparing Models for Embedded Deployment

Setting Configuration Parameters for Embedded IDE Link

In this section...

“What are Configuration Parameters?” on page 2-6

“Setting Model Configuration Parameters” on page 2-6

What are Configuration Parameters?
The Configuration Parameters dialog box specifies the settings for a
model’s active configuration set. These parameters determine the type of
solver used, import and export settings, and other values that determine how
the model runs. See Configuration Sets for more information.

To display the dialog box, select Simulation > Configuration Parameters
in the Model Editor, or press Ctrl+E. The dialog box appears.

For comprehensive information about configuration parameters in Simulink
see, “Configuration Parameters Dialog Box”

Setting Model Configuration Parameters
The Embedded IDE Link software sets the appropriate default values for your
processor and IDE when you drop a target preferences block in your model
and click Yes in response to dialog box that asks whether to “set the model
configuration parameters to the default values”. For example:

2-6

Setting Configuration Parameters for Embedded IDE Link™

The following subsections provides a quick overview of the panes and
parameters you are most with which you are most likely to interact.

efer to “About the TLC Debugger” in your Real-Time Workshop processor
Language Compiler documentation.

Note The following subtopics assume you’ve added a target preferences block
to your model and accepted the default values.

Real-Time Workshop Pane
The default System target file is idelink_ert.tlc. When you select
idelink_ert.tlc or idelink_grt.tlc, the dialog box displays a new pane
for Embedded IDE Link at the bottom of the select tree.

2-7

2 Preparing Models for Embedded Deployment

To use Real-Time Workshop Embedded Coder software or the
Processor-in-the-Loop feature, leave System target file set to
idelink_ert.tlc.

Disregard the Build process options. Embedded IDE Link software does
not use makefiles to generate code. Code generation is project based so the
options in this group do not apply.

Note Embedded IDE Link software has a separate feature that automatically
generates makefiles, which you can use to build applications with your
software development toolchain. For more information, see Generating
Makefiles.

If you generate code from a model that uses custom storage classes (CSC),
leave Ignore custom storage classes unselected.

2-8

Setting Configuration Parameters for Embedded IDE Link™

To use a system target file that does not support CSCs, such as
idelink_grt.tlc, without reconfiguring your parameter and signal objects,
select Ignore custom storage classes. When you select Ignore custom
storage classes:

• The software treats objects with CSCs as if you set their storage class
attribute to Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Embedded IDE Link Pane Parameters
On the select tree, the Embedded IDE Link entry provides options in these
areas:

• Run-Time— Set options for run-time operations, like the build action

• Project Options— Set build options for your project code generation

• Code Generation— Configure your code generation requirements

• Link Automation — Export an IDE handle object, such as IDE_Obj, to
your MATLAB workspace

• Diagnostic options — Determine how the code generation process
responds when you use source code replacement, either in the Target
Preferences block Board custom code options, or in the Real-Time
Workshop Custom Code options in the configuration parameters.

For more information, see Embedded IDE Link Users Guide .

Build format. Select Project to build a project for your IDE, or select
Makefile to generate a makefile for your development tool chain.

For more information, see Build Format.

Build action. Your selection for Build action determines what happens
when you click Build or press Ctrl+B. Your selection tells Real-Time
Workshop software when to stop the code generation and build process.

2-9

2 Preparing Models for Embedded Deployment

To run your model on the processor, select Build_and_execute. This selection
is the default build action; Real-Time Workshop software automatically
downloads and runs the model on your board.

The actions are cumulative—each listed action adds features to the previous
action on the list and includes all the previous features.

If you set Build format to Project, select one of the following options:

• Create_Project — Directs Real-Time Workshop software to start the
IDE and populate a new project with the files from the build process. This
option offers a convenient way to build projects in the IDE.

• Archive_library— Directs Real-Time Workshop software to archive the
project for this model. Use this option when you plan to use the model in
a model reference application. Model reference requires that you archive
your the IDE projects for models that you use in model referencing.

• Build— Builds the executable COFF file, but does not download the file
to the processor.

• Build_and_execute — Directs Real-Time Workshop software to build,
download, and run your generated code as an executable on your processor.

• Create_processor_in_the_loop_project — Directs the Real-Time
Workshop code generation process to create PIL algorithm object code as
part of the project build.

If you set Build format to Makefile, select one of the following options:

• Create_makefile — Creates a makefile.

• Archive_library— Creates a makefile and an archive library.

• Build — Creates a makefile and an executable.

• Build_and_execute — Creates a makefile and an executable. Then it
evaluates the execute instruction in the current configuration. For more
information, see Execute.

2-10

Setting Configuration Parameters for Embedded IDE Link™

Note When you build and execute a model on your processor, the Real-Time
Workshop software build process resets the processor automatically. You do
not need to reset the board before building models.

For more information, see Build action.

Overrun notification. To enable the overrun indicator, choose one of three
ways for the processor to respond to an overrun condition in your model:

• None— Ignore overruns encountered while running the model.

• Print_message — When the DSP encounters an overrun condition, it
prints a message to the standard output device, stdout.

• Call_custom_function — Respond to overrun conditions by calling the
custom function you identify in Function name.

For more information, see “Overrun notification” on page 10-10.

Function name. When you select Call_custom_function from the Overrun
notification list, you enable this option. Enter the name of the function the
processor should use to notify you that an overrun condition occurred. The
function must exist in your code on the processor.

For more information, see “Function name” on page 10-12.

Configuration. The Configuration parameter defines sets of build options
that apply to all of the files generated from your model.

The Release and Debug option apply build settings that are defined by your
IDE. For more information, refer to your IDE documentation.

Custom has the same default values as Release, but:

• Leaves Compiler options string empty and s

• Specifies a memory model that uses Far Aggregate for data and Far for
functions.

2-11

2 Preparing Models for Embedded Deployment

For more information, see “Configuration” on page 10-15.

Compiler options string. To determine the degree of optimization provided
by the optimizing compiler, enter the optimization level to apply to files
in your project. For details about the compiler options, refer to your IDE
documentation. When you create new projects, Embedded IDE Link does not
set any optimization flags.

Click Get From IDE to import the compiler option setting from the current
project in the IDE. To reset the compiler option to the default value, click
Reset.

For more information, see “Compiler options string” on page 10-17.

Linker options string. To specify the options provided by the linker during
link time, you enter the linker options as a string. For details about the linker
options, refer to your IDE documentation. When you create new projects,
Embedded IDE Link does not set any linker options.

Click Get From IDE to import the linker options string from the current
project in the IDE. To reset the linker options to the default value of no
options, click Reset.

For more information, see “Linker options string” on page 10-19.

System stack size (MAUs). Enter the amount of memory to use for the
stack. For more information, refer to Enable local block outputs on the
Optimization pane of the Configuration Parameters dialog box. Block output
buffers are placed on the stack until the stack memory is fully allocated.
After that, the output buffers go in global memory. Also refer to the online
Help system for more information about Real-Time Workshop options for
configuring and building models and generating code.

For more information, see “System stack size (MAUs)” on page 10-21.

System heap size (MAUs). Enter the amount of memory to use for the heap.

For more information, see “System heap size (MAUs)” on page 10-23.

2-12

Setting Configuration Parameters for Embedded IDE Link™

Profile real-time execution. To enable the real-time execution profile
capability, select Profile real-time execution. With this selected, the build
process instruments your code to provide performance profiling at the task
level or for atomic subsystems. When you run your code, the executed code
reports the profiling information in an HTML report.

For more information, see “Profile real-time execution” on page 10-24.

Link Automation. When you use Real-Time Workshop to build a model
for a processor, Embedded IDE Link makes a connection between MATLAB
software and the IDE.

Constructors create objects that reference the link between the IDE and
MATLAB. Link automation refers to the same object, named IDE_Obj in the
function reference pages.

Although IDE_Obj is a bridge to a specific instance of the IDE, it is an object
that contains information about the IDE instance it refers to, such as the
board and processor it accesses. In this pane, the Export IDE link handle
to base workspace option lets you instruct Embedded IDE Link to export
the object to your MATLAB workspace, giving it the name you assign in IDE
link handle name.

Maximum time allowed to build project (s). Specifies how long the
software waits for the IDE to build the software.

For more information, see “Maximum time allowed to build project (s)” on
page 10-30.

Maximum time allowed to complete IDE operations (s). Specifies how
long the software waits for IDE functions, such as read or write, to return
completion messages.

For more information, see “Maximum time allowed to complete IDE
operations (s)” on page 10-32.

Export IDE link handle to base workspace. Directs the software to
export the IDE_Obj object to your MATLAB workspace.

2-13

2 Preparing Models for Embedded Deployment

For more information, see “Export IDE link handle to base workspace” on
page 10-33.

IDE link handle name. Specifies the name of the IDE_Obj object that the
build process creates.

For more information, see “IDE link handle name” on page 10-35.

Source file replacement. Selects the diagnostic action to take if the
software detects conflicts when you replace source code with custom code.
The diagnostic message responds to both source file replacement in the
Embedded IDE Link parameters and in the Real-Time Workshop Custom
code parameters in the configuration parameters for your model.

The following settings define the messages you see and how the code
generation process responds:

• none— Does not generate warnings or errors when it finds conflicts.

• warning— Displays a warning. warn is the default value.

• error— Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

The build operation continues if you select warning and the software detects
custom code replacement problems. You see warning messages as the build
progresses

Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your
custom code replacement files. Use none when the replacement process is
correct and you do not want to see multiple messages during your build.

For more information, see “Source file replacement” on page 10-36.

2-14

Working with Block Libraries

Working with Block Libraries
For general information about working with block libraries in Simulink, see
“Working with Block Libraries”.

2-15

2 Preparing Models for Embedded Deployment

Simulink Models and Targeting

In this section...

“Creating Your Simulink Model for Targeting” on page 2-16

“Blocks to Avoid in Your Models” on page 2-17

Creating Your Simulink Model for Targeting
You create real-time digital signal processing models the same way you create
other Simulink models—by combining standard DSP blocks and C-MEX
S-functions.

You add blocks to your model in several ways:

• Use blocks from the Signal Processing Blockset™ software

• Use other Simulink discrete-time blocks

• Use the blocks provided for your processor family

• Use blocks that provide the functions you need from any blockset installed
on your computer

• Create and use custom blocks

Once you have designed and built your model, you generate C code and build
the real-time executable by clicking Build on the Real-Time Workshop
pane of the Configuration Parameters dialog box. The automatic build process
creates the file modelname.out containing a real-time model image in COFF
file format that can run on your target.

The file modelname.out is an executable whose format is target-specific. You
can load the file to your target and execute it in real time. Refer to your
Real-Time Workshop documentation for more information about the build
process.

2-16

Simulink® Models and Targeting

Blocks to Avoid in Your Models
Many blocks in the blocksets communicate with your MATLAB workspace.
All blocks generate code, but they do not work in the generated code as they
do on your desktop.

You avoid using certain blocks, such as the Scope block and some source and
sink blocks, in Simulink models that you use on Target Support Package
targets. These blocks waste time in the generated code waiting to send or
receive data from your MATLAB workspace, slowing your signal processing
application without adding instrumentation value.

The following table describes blocks you should not use in your target models.

Block
Name/Category Library Description

Scope Simulink, Signal
Processing
Blockset software

Provides oscilloscope view of
your output. Do not use the
Save data to workspace
option on the Data history
pane in the Scope Parameters
dialog box.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from
your MATLAB workspace.

Spectrum Scope Signal Processing
Blockset

Compute and display the
short-time FFT of a signal.
It has internal buffering that
can slow your process without
adding value.

To File Simulink Send data to a file on your host
machine.

From File Simulink Get data from a file on your host
machine.

Triggered to
Workspace

Signal Processing
Blockset

Send data to your MATLAB
workspace.

2-17

2 Preparing Models for Embedded Deployment

Block
Name/Category Library Description

Signal To
Workspace

Signal Processing
Blockset

Send a signal to your MATLAB
workspace.

Signal From
Workspace

Signal Processing
Blockset

Get a signal from your MATLAB
workspace.

Triggered Signal
From Workspace

Signal Processing
Blockset

Get a signal from your MATLAB
workspace.

To Wave device Signal Processing
Blockset

Send data to a .wav device.

From Wave device Signal Processing
Blockset

Get data from a .wav device.

In general, using blocks to add instrumentation to your application is
a valuable tool. In most cases, blocks you add to your model to display results
or create plots, such as Histogram blocks, add to your generated code without
affecting your running application.

2-18

3

Generating IDE Projects

• “Introducing Project Generator” on page 3-2

• “Project Generation” on page 3-3

• “Schedulers and Timing” on page 3-4

• “Project Generator Tutorial” on page 3-23

• “Setting Code Generation Parameters for Processors” on page 3-29

• “Using Custom Source Files in Generated Projects” on page 3-32

• “Optimizing Embedded Code with Target Function Libraries” on page 3-36

• “Model Reference” on page 3-43

3 Generating IDE Projects

Introducing Project Generator
Project generator provides the following features for developing projects and
generating code:

• Support automated project building for IDE software that lets you create
projects from code generated by Real-Time Workshop and Real-Time
Workshop Embedded Coder products. The project automatically populates
IDE projects in the IDE development environment.

• Configure code generation using model configuration parameters and
processor preferences block options

• Select from two system target files to generate code specific to your
processor

• Configure project build process

• Automatically download and run your generated projects on your processor

3-2

Project Generation

Project Generation
Project Generator uses handle objects to connect to IDEs. Each time you build
a model to generate a project, the build process uses one of the following
constructors to create an IDE handle object:

• altiumtasking for Altium TASKING

• adivdsp for Analog Devices VisualDSP++

• eclipseide for Eclipse IDE

• ghsmulti for Green Hills MULTI

• ticcs for Texas Instruments’ Code Composer Studio

The software attempts to connect to the board (boardnum) and processor
(procnum) associated with the Board name and Processor number
parameters in the Target Preferences block in the model.

3-3

3 Generating IDE Projects

Schedulers and Timing

In this section...

“Configuring Models for Asynchronous Scheduling” on page 3-4

“Cases for Using Asynchronous Scheduling” on page 3-5

“Using Scheduling Blocks to Control Code Execution” on page 3-7

“Comparing Synchronous and Asynchronous Interrupt Processing” on
page 3-7

“Using Synchronous Scheduling” on page 3-9

“Using Asynchronous Scheduling” on page 3-10

“Multitasking Scheduler Examples” on page 3-10

Configuring Models for Asynchronous Scheduling
Using the scheduling blocks, you can use an asynchronous (real-time)
scheduler for your processor application. The asynchronous scheduler enables
you to define interrupts and tasks to occur when you want by using blocks in
the following block libraries:

• idelinklib_common

Note

• One way to view the block libraries is by entering the block library name at
the MATLAB command line. For example: >> idelinklib_common

• You cannot build and run the models in following examples without
additional blocks. They are for illustrative purposes only.

Also, you can schedule multiple tasks for asynchronous execution using the
blocks.

3-4

Schedulers and Timing

The following figures show a model updated to use the asynchronous
scheduler by converting the model to a function subsystem and then adding
a scheduling block (Hardware Interrupt) to drive the function subsystem in
response to interrupts.

Before
The following model uses synchronous scheduling provided by the base rate
in the model.

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

After
To convert to asynchronous operation, wrap the model in the previous figure
in a function block and drive the input from a Hardware Interrupt block. The
hardware interrupts that trigger the Hardware Interrupt block to activate an
ISR now triggers the model inside the function block.

Algorithm Inside the Function Call Subsystem Block
Here’s the model inside the function call subsystem in the previous figure. It
is the same as the original model that used synchronous scheduling.

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

Cases for Using Asynchronous Scheduling
The following sections present common cases for using the scheduling blocks
described in the previous sections.

3-5

3 Generating IDE Projects

Idle Task
The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. Subsystem execution of the reverberation
function is data driven via a background DMA interrupt-controlled ISR,
shown in the following figure.

Out1
1

Integer Delay

z
−2400

Feedback Gain

0.8

Delay Mix

.9

function

f()

In1
1

Hardware Interrupt Triggered Task
In the next figure, you see a case where a function (LED Control) runs in the
context of a hardware interrupt triggered task.

3-6

Schedulers and Timing

In this model, the Hardware Interrupt block installs a task that runs when
it detects an external interrupt. This task performs the specified function
with an LED.

Using Scheduling Blocks to Control Code Execution
Embedded IDE Link Hardware Interrupt blocks enable selected hardware
interrupts processors, generate corresponding ISRs, and connect them to the
corresponding interrupt service vector table entries.

When you connect the output of the Hardware Interrupt block to the control
input of a function-call subsystem, the generated subsystem code is called
from the ISRs each time the interrupt is raised.

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected. For more
information, see “Idle Task” on page 3-6.

Comparing Synchronous and Asynchronous Interrupt
Processing
Code generated for periodic tasks, both single- and multitasking, runs
via a timer interrupt. A timer interrupt ensures that the generated code
representing periodic-task model blocks runs at the specified period. The

3-7

3 Generating IDE Projects

periodic interrupt clocks code execution at runtime. This periodic interrupt
clock operates on a period equal to the base sample time of your model.

Note The execution of synchronous tasks in the model commences at the time
of the first timer interrupt. Such interrupt occurs at the end of one full base
rate period which follows timer setup. The time of the start of the execution
corresponds to t=0.

The following figure shows the relationship between model startup and
execution. Execution starts where your model executes the first interrupt,
offset to the right of t=0 from the beginning of the time line. Before the first
interrupt, the simulation goes through the timer set up period and one base
rate period.

����

����� 	
���
����
��
��������������

����������
�����

	
���
��
�����

	
���
��
�����

	
���
��
�����

Timer-based scheduling does not provide enough flexibility for some systems.
Systems for control and communications must respond to asynchronous
events in real time. Such systems may need to handle a variety of hardware
interrupts in an asynchronous, or aperiodic , fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

• If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the library to your model:

3-8

Schedulers and Timing

- A Hardware Interrupt block, to create an interrupt service routine to
handle hardware interrupts on the selected processor

- An Idle Task block, to create a task that runs as a separate thread

• Simulink sets the base rate priority to 40, the lowest priority.

• If your application does not service asynchronous interrupts, include only
the algorithm and device driver blocks that specify the periodic sample
times in the model.

Note Generating code from a model that does not service asynchronous
interrupts automatically enables and manages a timer interrupt. The
periodic timer interrupt clocks the entire model.

Using Synchronous Scheduling
Code that runs synchronously via a timer interrupt requires an interrupt
service routine (ISR). Each model iteration runs after an ISR services a
posted interrupt. The code generated for Embedded IDE Link uses a timer.
To calculate the timer period, the software uses the following equation:

Timer Period
CPU Clock Rate Base Sample Time

Low Resolu
_

(_ _) * (_ _)
_

=
ttion Clock Divider

Prescaler
_ _

*

The software configures the timer so that the base rate sample time for
the coded process corresponds to the interrupt rate. Embedded IDE Link
calculates and configures the timer period to ensure the desired sample rate.

Different processor families use the timer resource and interrupt number
differently. Entries in the following table show the resources each family uses.

The minimum base rate sample time you can achieve depends on two
factors—the algorithm complexity and the CPU clock speed. The maximum
value depends on the maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and you do not
define the sample time, Simulink assigns a default sample time of 0.2 second.

3-9

3 Generating IDE Projects

Using Asynchronous Scheduling
Embedded IDE Link enables you to model and automatically generate code
for asynchronous systems. To do so, use the following scheduling blocks:

• Hardware Interrupt (for bare-board code generation mode)

• Idle Task

The Hardware Interrupt block operates by

• Enabling selected hardware interrupts for the processor

• Generating corresponding ISRs for the interrupts

• Connecting the ISRs to the corresponding interrupt service vector table
entries

Note You are responsible for mapping and enabling the interrupts you
specify in the block dialog box.

Connect the output of the Hardware Interrupt block to the control input
of a function-call subsystem. By doing so, you enable the ISRs to call the
generated subsystem code each time the hardware raises the interrupt.

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected.

Multitasking Scheduler Examples
Embedded IDE Link provides a scheduler that supports multiple tasks
running concurrently and preemption between tasks running at the same
time. The ability to preempt running tasks enables a wide range of scheduling
configurations.

Multitasking scheduling also means that overruns, where a task runs beyond
its intended time, can occur during execution.

3-10

Schedulers and Timing

To understand these examples, you must be familiar with the following
scheduling concepts:

• Preemption is the ability of one task to pause the processing of a running
task to run instead. With the multitasking scheduler, you can define a
task as preemptible—thus, another task can pause (preempt) the task
that allows preemption. The scheduler examples in this section that
demonstrate preemption, illustrate one or more tasks allowing preemption.

• Overrunning occurs when a task does not reach completion before it is
scheduled to run again. For example, overrunning can occur when a
Base-Rate task does not finish in 1 ms. Overrunning delays the next
execution of the overrunning task and may delay execution of other tasks.

Examples in this section demonstrate a variety of multitasking configurations:

• “Three Odd-Rate Tasks Without Preemption and Overruns” on page 3-13

• “Two Tasks with the Base-Rate Task Overrunning, No Preemption” on
page 3-14

• “Two Tasks with Sub-Rate 1 Overrunning Without Preemption” on page
3-15

• “Three Even-Rate Tasks with Preemption and No Overruns” on page 3-16

• “Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rate1
Tasks Overrun” on page 3-18

• “Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overruns”
on page 3-19

• “Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-Rate
1 Tasks Overrun” on page 3-21

Each example presents either two or three tasks:

• Base Rate task. Base rate is the highest rate in the model or application.
The examples use a base rate of 1ms so that the task should execute every
one millisecond.

• Sub-Rate 1. The first subrate task. Sub-Rate 1 task runs more slowly
than the Base-Rate task. Sub-Rate 1 task rate is 2ms in the examples so
that the task should execute every 2ms.

3-11

3 Generating IDE Projects

• Sub-Rate 2. In examples with three tasks, the second subrate task is
called Sub-Rate 2. Sub-Rate 2 tasks run more slowly than Sub-Rate 1. In
the examples, Sub-Rate 2 runs at either 4ms or 3ms.

- When Sub-Rate 2 is 4ms, the example is called even.

- When Sub-Rate 2 is 3ms, the example is called odd.

Note The odd or even naming only identifies Sub-Rate 2 as being 3 or
4ms. It does not affect or predict the performance of the tasks.

The following legend applies to the plots in the next sections:

• Blue triangles () indicate when the task started.

• Dark red areas () indicate the period during which a task is running

• Pink areas () within dark red areas indicate a period during which a
running task is suspended—preempted by a task with higher priority

3-12

Schedulers and Timing

Three Odd-Rate Tasks Without Preemption and Overruns
In this three task scenario, all of the tasks run as scheduled. No overruns
or preemptions occur.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms

Sub-Rate 1 2ms 2ms

Sub-Rate 2 3ms 3ms

3-13

3 Generating IDE Projects

Two Tasks with the Base-Rate Task Overrunning, No
Preemption
In this two rate scenario, the Base-Rate overruns the 1ms time intended and
prevents the subrate task from completing successfully or running every 2ms.

• Sub-Rate 1 does not allow preemption and fails to run when scheduled, but
is never interrupted.

• The Base-Rate runs every 2ms and Sub-Rate 1 runs every 4ms instead
of 2ms.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

Sub-Rate 1 2ms 4ms (overrunning)

3-14

Schedulers and Timing

Two Tasks with Sub-Rate 1 Overrunning Without Preemption
In this example, two rates running simultaneously—the Base-Rate task and
one subrate task. Both the Base-Rate task and the Sub-Rate 1 task overrun.

• Base-Rate runs every 2ms instead of 1ms.

- The Sub-Rate 1 task both overruns and is affected by the Base-Rate
task overrunning.

- The Base-Rate task overrun delays Sub-Rate 1 task execution by a
factor of 4.

• Sub-Rate 1 runs every 8ms rather than every 2ms.

• The Base-Rate runs at 1ms.

• The Base-Rate task preempts Sub-Rate 1 when it tries to execute.

• The Sub-Rate 1 tasks overrun, taking up to 5ms to complete rather than
2ms.

3-15

3 Generating IDE Projects

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

Sub-Rate 1 2ms 8ms (overrunning)

Three Even-Rate Tasks with Preemption and No Overruns
In the following three task scenario, the Base-Rate runs as scheduled and
preempts Sub-Rate 1.

• Both the Base-Rate and Sub-Rate 1 tasks preempt Sub-Rate 2 task
execution.

• Preempting the subrate tasks does not prevent the subrate tasks from
running on schedule.

3-16

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms

Sub-Rate 1 2ms 2ms

Sub-Rate 2 4ms 4ms

3-17

3 Generating IDE Projects

Three Odd-Rate Tasks Without Preemption and the Base and
Sub-Rate1 Tasks Overrun
Three tasks running simultaneously—the Base-Rate task and two subrate
tasks.

• Both the Base-Rate task and the Sub-Rate 1 task overrun.

• The Base-Rate task runs every 2ms instead of 1ms.

• Sub-Rate 1 and Sub-Rate 2 task execution is delayed by a factor of
2—Sub-Rate 1 runs every 4ms rather than every 2ms and Sub-Rate 2 runs
every 6ms instead of 3ms.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

Sub-Rate 1 2ms 4ms (overrunning)

Sub-Rate 2 3ms 6ms (overrunning)

3-18

Schedulers and Timing

Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task
Overruns
In this three task scenario, the Base-Rate preempts Sub-Rate 1 which is
overrunning.

• The overrunning subrate causes Sub-Rate 1 to execute every 4ms instead
of 2ms.

• Every other fourth execution of Sub-Rate 2 does not occur.

• Instead of executing at t=0, 3, 6, 9, 12, 15, 18,…, Sub-Rate 2 executes at
t=0, 3, 9, 12, 15, 21, and so on.

• The t=6 and t=18 instances do not occur.

3-19

3 Generating IDE Projects

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

Sub-Rate 1 2ms 4ms (overrunning)

Sub-Rate 2 3ms 6ms (overrunning and
skipping every other
fourth execution)

3-20

Schedulers and Timing

Three Even-Rate Tasks with Preemption and the Base-Rate
and Sub-Rate 1 Tasks Overrun
In this three-task scenario, two of the tasks overrun—the Base-Rate and
Sub-Rate 1.

• The overrunning Base-Rate executes every 2ms.

• Sub-Rate 1 overruns due to the Base-Rate overrun, doubling the execution
rate.

• Also, Sub-Rate 1 is overrunning as well, doubling the execution rate again,
from the intended 2ms to 8ms.

• Sub-Rate 2 responds to the overrunning Base-Rate and Sub-Rate 1 tasks
by running every 16ms instead of every 4ms.

3-21

3 Generating IDE Projects

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)

Sub-Rate 1 2ms 8ms (overrunning)

Sub-Rate 2 3ms 16ms (overrunning)

3-22

Project Generator Tutorial

Project Generator Tutorial

In this section...

“Creating the Model” on page 3-24

“Adding the Target Preferences Block to Your Model” on page 3-24

“Specify Configuration Parameters for Your Model” on page 3-26

In this tutorial you will use the Embedded IDE Link software to:

• Build a model.

• Generate a project from the model.

• Build the project and run the binary on a processor.

Note The model demonstrates project generation. You cannot not build and
run the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Create a model application.

2 Add a Target Preferences block from the Embedded IDE Link library to
your model.

3 In the Target Preferences block, verify and set the block parameters for
your hardware or simulator.

4 Set the configuration parameters for your model, including

• Solver parameters such as simulation start and solver options

• Real-Time Workshop software options such as processor configuration
and processor compiler selection

5 Generate your project.

6 Review your project in the IDE.

3-23

3 Generating IDE Projects

Creating the Model
To create the model for audio reverberation, follow these steps:

1 Start Simulink software.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Look for the Integer Delay block in the Discrete library of Simulink blocks
and the Gain block in the Commonly Used Blocks library. Do not add the
Custom Board block for the IDE at this time.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
To configure your model to work with a specific processor, use a Target
Preferences/Custom Board block. These are available in the block library for
your processor and in the following IDE block libraries:

• idelinklib_adivdsp

• idelinklib_ghsmulti

• idelinklib_ticcs

• idelinklib_eclipseide

Adding a Target Preferences block to a model triggers a dialog box that asks
about your model configuration settings. The message tells you that the model
configuration parameters will be set to default values based on the processor

3-24

Project Generator Tutorial

specified in the block parameters. To set the parameters automatically, click
Yes. Clicking No dismisses the dialog box and does not set the parameters.

When you click Yes, the software sets the system target file to
idelink_grt.tlc or idelink_ert.tlc and sets the hardware options and
product-specific parameters in the model to default values. If you open the
model Configuration Parameters, you see the Embedded IDE Link pane
option on the select tree.

Clicking No prevents the software from setting the system target file and
the product specific options. When you open the model Configuration
Parameters for your model, you do not see the Embedded IDE Link pane
option on the select tree. To enable the options, select the idelink_ert.tlc
or idelink_grt.tlc system target file from the System Target File list in the
Real-Time Workshop pane options.

To add the target preferences block to your model, follow these steps:

1 Open the block library for your IDE or processor.

2 Drag and drop the target preferences block to your model.

3 Open the target preferences block by double-clicking it.

4 In the target preferences block dialog box, select your processor from the
Processor list.

5 If Verify the CPU clock value and, if you are using a simulator, select
Simulator.

6 Verify the settings on theMemory and Sections tabs to be sure they are
correct for the processor you selected.

7 Click OK to close the Target Preferences dialog box.

You have completed the model. Now configure the model configuration
parameters to generate a project in the IDE from your model.

3-25

3 Generating IDE Projects

Note To configure your model to run on Windows or Linux, see Preparing
Models to Run on Windows or Linux.

Specify Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink software.

Setting Solver Parameters
After you have designed and implemented your digital signal processing model
in Simulink software, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking

Note Generated code does not honor Simulink software stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in generated
code, add a Stop Simulation block in your model.

When you use PIL, you can set the Solver options to any selection from
the Type and Solver lists.

3-26

Project Generator Tutorial

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Code Generation Parameters
To configure Real-Time Workshop software to use the correct processor
files and to compile and run your model executable file, set the options in
the Real-Time Workshop category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the code generation options
for your DSP:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, use the Browse button to set System target file
to idelink_grt.tlc.

Setting Embedded IDE Link Parameters
To configure Real-Time Workshop software to use the correct code generation
options and to compile and run your model executable file, set the options in
the Embedded IDE Link category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the code generation options
for your processor:

1 From the Select tree, choose Embedded IDE Link to specify code
generation options that apply to your processor.

2 Set the following options in the pane under Configuration:

• Configuration should be Custom.

• Set Compiler options string and Linker options string should be
blank.

3 Under Link Automation, verify that Export IDE link handle to base
workspace is selected and provide a name for the handle in IDE handle
name (optional).

4 Set the following Runtime options:

• Build action: Build_and_execute.

3-27

3 Generating IDE Projects

• Overrun notification: None.

You have configured the Real-Time Workshop software options that let you
generate a project for you processor. You may have noticed that you did not
configure a few categories on the Select tree, such as Comments, Symbols,
and Optimization.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options
in these categories to provide information during the build and to run TLC
debugging when you generate code. Refer to your Simulink and Real-Time
Workshop documentation for more information about setting the configuration
parameters.

Building Your Project
After you set the configuration parameters and configure Real-Time
Workshop software to create the files you need, you direct the build process
to create your project:

1 Press OK to close the Configuration Parameters dialog box.

2 Click Ctrl+B to generate your project in the IDE.

When you click Build with Create_project selected for Build action,
the automatic build process starts the IDE, populates a new project in
the development environment, builds the project, loads the binary on the
processor, and runs it.

3 To stop processor execution, use the Halt option in the IDE or enter
IDE_Obj.halt at the MATLAB command prompt. (Where “IDE_Obj”
is the IDE handle name you specified previously in Configuration
Parameters.)

3-28

Setting Code Generation Parameters for Processors

Setting Code Generation Parameters for Processors
Before you generate code with Real-Time Workshop software, set the
fixed-step solver step size and specify an appropriate fixed-step solver if the
model contains any continuous-time states. At this time, you should also
select an appropriate sample rate for your system. Refer to your Real-Time
Workshop User’s Guide documentation for additional information.

Note Embedded IDE Link does not support continuous states in Simulink
software models for code generation. In the Solver options in the
Configuration Parameters dialog box, you must select Discrete (no
continuous states) as the Type, along with Fixed step.

The Real-Time Workshop pane of the Configuration Parameters dialog
box lets you set numerous options for the real-time model. To open the
Configuration Parameters dialog box, select Simulation > Configuration
Parameters from the menu bar in your model.

The following figure shows the configuration parameters categories when
you are using Embedded IDE Link.

3-29

3 Generating IDE Projects

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop software builds and runs your model. The
first categories under Real-Time Workshop in the tree apply to all Real-Time
Workshop software processors. They always appear on the list.

The last category under Real-Time Workshop is specific to the Embedded
IDE Link system target filesidelink_grt.tlc and idelink_ert.tlc and
appear when you select either file.

When you select your processor file in Target Selection on the Real-Time
Workshop pane, the options change in the tree.

For Embedded IDE Link, the processor to select is idelink_grt.tlc.
Selecting either the idelink_grt.tlc or idelink_ert.tlc adds the
Embedded IDE Link options to the Select tree. The idelink_grt.tlc file is

3-30

Setting Code Generation Parameters for Processors

appropriate for all projects. Select idelink_ert.tlc when you are developing
projects or code for embedded processors (requires Real-Time Workshop
Embedded Coder software) or you plan to use Processor-in-the-Loop features.

The following sections present each configuration parameters Select tree
category and the relevant options available in each.

3-31

3 Generating IDE Projects

Using Custom Source Files in Generated Projects

In this section...

“Preparing to Replace Generated Files With Custom Files” on page 3-32

“Replacing Generated Source Files with Custom Files When You Generate
Code” on page 3-34

The Board custom code options on the Board Info pane in the model’s
Target Preferences block enable you to replace a generated file with a custom
file you provide. By replacing a file, you can modify the output of the code
generation process to suit your needs. For file replacement during the code
generation process to work, your custom file must have the same name as
the file to replace.

The following sections show you how to:

• Identify the file to replace — “Preparing to Replace Generated Files With
Custom Files” on page 3-32

• Create the custom replacement file — “Preparing to Replace Generated
Files With Custom Files” on page 3-32

• Configure the target preferences to use the custom file when you generate
a project — “Replacing Generated Source Files with Custom Files When
You Generate Code” on page 3-34

For more information about the target preferences and the Board custom code
options, refer to Target Preferences/Custom Board in the online Help system.

Preparing to Replace Generated Files With Custom
Files
To change the content of a generated project, use custom code replacement
replace a generated file in the project. By replacing a generated file in a
project, you can make changes like the following in your generated project:

• Edit the file that contains linker directives to change the linking process,
such as mapping memory differently.

3-32

Using Custom Source Files in Generated Projects

• Modify a library file, such as a chip support library (.csl file)

• Add commands to a header file

• Modify data in a data file

• Add comments to a file for tracking or identifying the file or project

.

Determining the Name of the File to Replace
To replace a file created when you generate a project, you need the name of
the file to replace; the content to change; and the replacement file, including
the path to the file. Your model must include a target preferences block
configured for your processor, either a simulator or hardware.

The linker file for each IDE is has the same name as the model file, followed
by a different extension. For example:

• For CCS, modelname.cmd.

• For MULTI, modelname.ld

• For VisualDSP++, modelname.ldf

Follow these steps to identify the file to replace in a project:

1 Open the configuration parameters for your model.

2 On the Select tree in the Configuration Parameter dialog box, select .

3 Set Build action to any entry on the list except Create
processor-in-the-loop project.

4 Click OK to close the dialog box.

5 Press Ctrl+B to build your model.

6 Look at the files in the project in the IDE. Find the file that contains the
information to supplement or replace.

3-33

3 Generating IDE Projects

The build process stores the project files in a directory named after your
model and IDE, under in your MATLAB working directory. For example,
modelname_ccslink, modelname_multilink, or modelname_vdsplink.

It also shows the project directory information in the MATLAB Command
window.

7 Note the file name and location. You use this information to create your
custom replacement file.

Creating the Replacement File
To replace a file in a project during code generation, you need a new file with
the same name saved in a different directory. Creating your replacement file
from the file to replace increases the chances that the generated code will
work properly with the new file. The new file must have all of the information
the final project needs.

Follow these steps to create a file to use to replace a generated file in your
project.

1 Determine the name of the file to replace. Refer to “Determining the Name
of the File to Replace” on page 3-33 for how to do this.

2 Locate the file to replace. Copy the file and save it with the same name in
a new directory.

3 Open your new file and edit the file to add or remove the information to
change.

4 Save your changes to the file.

Replacing Generated Source Files with Custom Files
When You Generate Code
With the replacement file and location available, configure the build process to
use your replacement file. Parameters on the Target Preferences block dialog
box allow you to specify the replacement file to use. For more information
about the board custom code options, refer to Target Preferences/Custom
Board.

3-34

Using Custom Source Files in Generated Projects

Follow these steps to configure the build process to use a replacement file.

1 Double-click Target Preferences in your model.

2 In the Board custom code options, select the type of file to replace—Source
files or Libraries.

3 Enter the name of your replacement file and path in the text field.

The build process recognizes two directory path tokens:

• $MATLAB to refer to your MATLAB root directory

• $install_dir to refer to the root of your IDE installation.

4 Click OK to close the dialog box.

5 Open the configuration parameters for your model and select the Build
action to use to build your model.

6 From the Source code replacement list, select warning or error to see
messages when the build process replaces files.

7 Click OK to save your configuration.

8 Return to the model window and press Ctrl+B to build your project. The
generated project contains your replacement file instead of generating
the matching file.

3-35

3 Generating IDE Projects

Optimizing Embedded Code with Target Function Libraries

In this section...

“About Target Function Libraries and Optimization” on page 3-36

“Using a Processor-Specific Target Function Library to Optimize Code”
on page 3-38

“Process of Determining Optimization Effects Using Real-Time Profiling
Capability” on page 3-39

“Reviewing Processor-Specific Target Function Library Changes in
Generated Code” on page 3-40

“Reviewing Target Function Library Operators and Functions” on page 3-42

“Creating Your Own Target Function Library” on page 3-42

About Target Function Libraries and Optimization
A target function library is a set of one or more function tables that define
processor- and compiler-specific implementations of functions and arithmetic
operators. The code generation process uses these tables when it generates
code from your Simulink model.

The software registers processor-specific target function libraries during
installation. To use one of the libraries, select the set of tables that correspond
to functions implemented by intrinsics or assembly code for your processor
from the Target function library list in the model configuration parameters.
To do this, complete the following steps:

1 In your model, select Simulation > Configuration Parameters.

2 In the Configuration Parameters dialog box, select Real-Time Workshop
and Interface.

3 Set the Target function library parameter to the appropriate library for
your processor.

After you select the processor-specific library, the model build process uses the
library contents to optimize generated code for that processor. The generated
code includes processor-specific implementations for sum, sub, mult, and div,

3-36

Optimizing Embedded Code with Target Function Libraries

and various functions, such as tan or abs, instead of the default ANSI®

C instructions and functions. The optimized code enables your embedded
application to run more efficiently and quickly, and in many cases, reduces the
size of the code. For more information about target function libraries, refer
to “Introduction to Target Function Libraries” in the Real-Time Workshop
Embedded Coder documentation.

Code Generation Using the Target Function Library
The build process begins by converting your model and its configuration set to
an intermediate form that reflects the blocks and configurations in the model.
Then the code generation phase starts.

Note Real-Time Workshop refers to the following conversion process as
replacement and it occurs before the build process generates a project.

During code generation for your model, the following process occurs:

1 Code generation encounters a call site for a function or arithmetic operator
and creates and partially populates a target function library entry object.

2 The entry object queries the target function library database for an
equivalent math function or operator. The information provided by the code
generation process for the entry object includes the function or operator
key, and the conceptual argument list.

3 The code generation process passes the target function library entry object
to the target function library.

4 If there is a matching table entry in the target function library, the query
returns a fully-populated target function library entry to the call site,
including the implementation function name, argument list, and build
information

5 The code generation process uses the returned information to generate code.

Within the target function library that you select for your model, the software
searches the tables that comprise the library. The search occurs in the order
in which the tables appear in either the Target Function Library Viewer or

3-37

3 Generating IDE Projects

the Target function library tool tip. For each table searched, if the search
finds multiple matches for a target function library entry object, priority
level determines the match to return. The search returns the higher-priority
(lower-numbered) entry.

For more information about target function libraries in the build process, refer
to “Introduction to Target Function Libraries” in the Real-Time Workshop
Embedded Coder documentation.

Using a Processor-Specific Target Function Library to
Optimize Code
As a best practice, you should select the appropriate target function library
for your processor after you verify the ANSI C implementation of your project.

Note Do not select the processor-specific target function library if you use
your executable application on more than one specific processor. The operator
and function entries in a library may work on more than one processor within
a processor family. The entries in a library usually do not work with different
processor families.

To use target function library for processor-specific optimization when you
generate code, you must install Real-Time Workshop Embedded Coder
software. Your model must include a Target Preferences block configured
for you intended processor.

Perform the following steps to select the target function library for your
processor:

1 Select Simulation > Configuration Parameters from the model menu
bar. The Configuration Parameters dialog box for your model opens.

2 On the Select tree in the Configuration Parameters dialog box, choose
Real-Time Workshop.

3 Use Browse to select idelink_ert.tlc as the System target file.

4 On the Select tree, choose Interface.

3-38

Optimizing Embedded Code with Target Function Libraries

5 On the Target function library list, select the processor family that
matches your processor. Then, click OK to save your changes and close
the dialog box.

With the target function library selected, your generated code uses the specific
functions in the library for your processor.

To stop using a processor-specific target function library, open the Interface
pane in the model configuration parameters. Then, select the C89/C90
(ANSI) library from the Target function library list.

Process of Determining Optimization Effects Using
Real-Time Profiling Capability
You can use the real-time profiling capability to examine the results of
applying the processor-specific library functions and operators to your
generated code. After you select a processor-specific target function library,
use the real-time execution profiling capability to examine the change in
program execution time.

Use the following process to evaluate the effects of applying a processor-specific
target function library when you generate code:

1 Enable real-time profiling in your model. Refer to “Profiling Code Execution
in Real-Time” on page 5-10.

2 Generate code for your project using the default target function library
C89/C90 ANSI.

3 Profile the code, and save the report.

4 Rebuild your project using a processor-specific target function library
instead of the C89/C90 ANSI library.

5 Profile the code, and save the second report.

6 Compare the profile report from running your application with the
processor-specific library selected to the profile results with the ANSI
library selected in the first report.

3-39

3 Generating IDE Projects

For a demonstration of verifying the code optimization, refer to the Embedded
IDE Link demos. Review the demo Optimizing Embedded Code via Target
Function Library.

Reviewing Processor-Specific Target Function Library
Changes in Generated Code
Use one of the following techniques or tools to see the target function library
elements where they appear in the generated code:

• Review the Code Manually.

• Use Model-to-Code Tracing to navigate from blocks in your model to the
code generated from the block.

• Use a File Differencing Scheme to compare projects that you generate
before and after you select a processor-specific target function library.

Reviewing Code Manually
To see where the generated code uses target function library replacements,
review the file modelname.c . Look for code similar to the following examples.

For example, with CCS:For example, with MULTI:For example, with
VisualDSP++:

The functions shown are the multiply implementation functions registered
in the target function library. In these examples, the function performs an
optimized multiplication operation. Similar functions appear for add, and
sub. For more information about the arguments in the function, refer to
“Introduction to Target Function Libraries” in the online Help system.

Using Model-to-Code Tracing
You can use the model-to-code report options in the configuration parameters
to trace the code generated from any block with target function library. After
you create your model and select a target function library, follow these steps
to use the report options to trace the generated code:

1 Open the model configuration parameters.

3-40

Optimizing Embedded Code with Target Function Libraries

2 Select Report from the Select tree.

3 In the Report pane, select Create code generation report and
Model-to-code, and then save your changes.

4 Press Ctrl+B to generate code from your model.

The Real-Time Workshop Report window opens on your desktop. For
more information about the report, refer to the “Generating Reports for
Code Reviews and Traceability Analysis” topic in the Real-Time Workshop
Embedded Coder documentation.

5 Use model-to-code highlighting to trace the code generated for each block
with target function library applied:

• Right-click on a block in your model and select Real-Time
Workshop > Navigate to code from the context menu.

• Select Navigate-to-code to highlight the code generated from the block
in the report window.

Inspect the code to see the target function operator in the generated code.
For more information, refer to “Tracing Code Generated Using Your
Target Function Library” in the Real-Time Workshop Embedded Coder
documentation in the online Help system.

If a target function library replacement did not occur as you expected, use the
techniques described in “Examining and Validating Function Replacement
Tables” in the Real-Time Workshop Embedded Coder documentation to help
you determine why the build process did not use the function or operator.

Using a File Differencing Scheme
You can also review the target function library induced changes in your
project by comparing projects that you generate both with and without the
processor-specific target function library.

1 Generate your project with the default C89/C90 ANSI target function
library. Use Create Project, Archive Library, or Build for the Build
action in the Embedded IDE Link options.

2 Save the project to a new name—newproject1.

3-41

3 Generating IDE Projects

3 Go back to the configuration parameters for your model, and select a target
function library appropriate for your processor.

4 Regenerate your project.

5 Save the project with a new name—newproject2

6 Compare the contents of the modelname.c files from newproject1 and
newproject2. The differences between the files show the target function
library induced code changes.

Reviewing Target Function Library Operators and
Functions
Real-Time Workshop Embedded Coder software provides the Target Function
Library viewer to enable you to review the arithmetic operators and functions
registered in target function library tables.

To open the viewer, enter the following command at the MATLAB prompt.

RTW.viewTfl

For details about using the target function library viewer, refer to “Selecting
and Viewing Target Function Libraries” in the online Help system.

Creating Your Own Target Function Library
For details about creating your own library, refer to the following sections in
your Real-Time Workshop Embedded Coder documentation:

• “Introduction to Target Function Libraries”

• “Creating Function Replacement Tables”

• “Examining and Validating Function Replacement Tables”

3-42

Model Reference

Model Reference
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• Top model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop software detects
that your model contains referenced models. Simulink software generates
code for the referenced models and uses the generated code to build shared
library files for updating the model diagram and simulation. It also creates

3-43

3 Generating IDE Projects

an executable (a MEX file, .mex) for each reference model that is used to
simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on whether and how you change
the models and on the Rebuild options settings. You can access these
setting through theModel Reference pane of the Configuration Parameters
dialog box.

Model Reference in Code Generation
Real-Time Workshop software requires executables to generate code from
models. If you have not simulated your model at least once, Real-Time
Workshop software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop software calls
make_rtw on the top model, linking to all the library files it created for the
associated referenced models.

Using Model Reference
With few limitations or restrictions, Embedded IDE Link provides full support
for generating code from models that use model reference.

Build Action Setting
The most important requirement for using model reference with the TI’s
processors is that you must set the Build action (go to Configuration
Parameters > Embedded IDE Link) for all models referred to in the
simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

3-44

Model Reference

The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• With Texas Instruments CCS IDE, DSP/BIOS is disabled for all referenced
models. Only the top model supports DSP/BIOS operation.

• Overrun notification, Export IDE link handle to the base
workspace, and System stack size are disabled for the referenced
models.

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct processor. You must configure all the Target Preferences
blocks for the same processor.

To obtain information about which compiler to use and which archiver to
use to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does
not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Embedded IDE Link does not allow you to use certain
blocks or S-functions in reference models:

3-45

3 Generating IDE Projects

• No blocks from the C62x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No blocks from the C64x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No noninlined S-functions

• No driver blocks, such as the ADC or DAC blocks from any Target Support
Package or Target Support Package block library

Configuring processors to Use Model Reference
processors that you plan to use in Model Referencing must meet some general
requirements.

• A model reference compatible processor must be derived from the ERT or
GRT processors.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation processor.

• The External mode option is not supported in model reference Real-Time
Workshop software processor builds. Embedded IDE Link does not
support External mode. If you select this option, it is ignored during code
generation.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in Supporting Shared Utility
Directories in the Build Process in the Real-Time Workshop documentation.

To use an existing processor, or a new processor, with Model Reference, you
set the ModelReferenceCompliant flag for the processor. For information
on how to set this option, refer to ModelReferenceCompliant in the online
Help system.

If you start with a model that was created prior to version 2.4 (R14SP3), to
make your model compatible with the model reference processor, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

3-46

Model Reference

Models that you develop with versions 2.4 and later of Embedded IDE Link
automatically include the model reference capability. You do not need to
set the flag.

3-47

3 Generating IDE Projects

3-48

4

Generating Makefiles

• “Using Makefiles to Generate and Build Software” on page 4-2

• “Making an XMakefile Configuration Operational” on page 4-6

• “Example: Creating an XMakefile Configuration for the Intel Compiler”
on page 4-7

• “XMakefile User Configuration Dialog Box” on page 4-17

4 Generating Makefiles

Using Makefiles to Generate and Build Software

In this section...

“Overview” on page 4-2

“Configuring Your Model to Use Makefiles” on page 4-2

“Choosing an XMakefile Configuration” on page 4-3

“Building Your Model” on page 4-5

Overview
You can configure Embedded IDE Link to generate and build your software
using makefiles. Scenarios for using this feature include:

• Building software without opening an IDE

• Automating the build process for testing and continuous build environments

• Fine-tuning and customizing the build process

Configuring Your Model to Use Makefiles
Update your model configuration parameters to use a makefile instead of an
IDE when you build software from the model:

1 Add a target preferences block to your model and configure it for your
target processor. For more information, see “Setting Target Preferences”
on page 2-2.

2 In your model window, select Simulation > Configuration Parameters.

3 Under Real-Time Workshop, select Embedded IDE Link.

4 Set Build format to Makefile. For more information, see “Build format”
on page 10-5.

5 Set Build action to Build_and_execute. For more information, see “Build
action” on page 10-7.

4-2

Using Makefiles to Generate and Build Software

Choosing an XMakefile Configuration
Configure how Embedded IDE Link generates makefiles:

1 Enter xmakefilesetup on the MATLAB command line. The software opens
an XMakefile User Configuration dialog box.

2 For Template, select the option that matches your make utility.

3 For Configuration, select the option that describes your software build
toolchain and target processor platform.

Note If you set Configuration to msvs_host, restart MATLAB as described
in “Working with Microsoft® Visual Studio” on page 4-4 before building your
model software.

Things to consider while setting Configuration:

• Select Display operational configurations only to hide non-working
configurations.

4-3

4 Generating Makefiles

• To display all of the configurations, including non-operational
configurations, deselect Display operational configurations only. For
more information, see “Making an XMakefile Configuration Operational”
on page 4-6.

• The list of configurations can include non-editable configurations defined in
the software and editable configurations defined by you.

• To create a new editable configuration, use the New button.

• For more information, see “XMakefile User Configuration Dialog Box” on
page 4-17.

Working with Microsoft Visual Studio
If you set Configuration to msvs_host, restart MATLAB from a Visual
Studio® command prompt before building your model software with makefiles.
The vsvars32.bat file associated with the Visual Studio command prompt
configures the Visual Studio environment. Starting MATLAB from this
command prompt results in a session that can generate makefiles from the
msvs_host configuration.

To restart MATLAB from a Visual Studio command prompt:

1 Open a Visual Studio command prompt:

a Select your MSVS product from the Windows® Start > Programs menu.

b In Visual Studio Tools, select the Visual Studio Command Prompt.
For example:

2 Enter matlab at the Visual Studio Command Prompt.

3 In MATLAB, open and build your model.

If you do not restart MATLAB from Microsoft® Visual Studio command
prompt, building your model software generates an error whose ending is
similar to the following text:

The build failed with the following message:
"C:/Program Files/Microsoft Visual Studio...

4-4

Using Makefiles to Generate and Build Software

3792 Abort C:/Program Files/Microsoft Visual Studio 8/VC/bin/cl
gmake: *** [MW_csl.obj] Error 134

A related article is available on the Microsoft Web site at:
http://msdn.microsoft.com/en-us/library/1700bbwd.aspx

Building Your Model
In your model, click the build button or enter Ctrl+B. Embedded IDE Link
creates a makefile and performs the other actions you specified in Build
action.

By default, Embedded IDE Link outputs the derived files in the
<builddir>/<buildconfiguration> directory. For example, in
model_name/CustomMW.

Note With Green Hills MULTI, Embedded IDE Link outputs the derived files
in the <builddir> directory. For example, in model_ghsmulti.

4-5

http://msdn.microsoft.com/en-us/library/1700bbwd.aspx

4 Generating Makefiles

Making an XMakefile Configuration Operational
When the XMakefile utility starts, it checks each factory default configuration
to verify that the specified toolchain paths exist. If the paths are invalid,
the configuration is non-operational. Typically, the cause of this problem
is a difference between the path in the configuration and the actual path
of the IDE toolchain.

To make a configuration operational:

1 Deselect Display operational configurations only to display
non-operational configurations.

2 Select the non-operational configuration from the Configuration options.

3 When you click Apply, a new dialog box prompts you for the directory path
of any missing resources the configuration requires.

4-6

Example: Creating an XMakefile Configuration for the Intel Compiler

Example: Creating an XMakefile Configuration for the
Intel Compiler

In this section...

“Overview” on page 4-7

“Create a Configuration” on page 4-7

“Modify the Configuration” on page 4-9

“Test the Configuration” on page 4-12

Overview
This example shows you how to add makefile support for a software
development toolchain to Embedded IDE Link. This example uses the
Eclipse IDE, which provides an open framework and allows for otherwise
unsupported toolchains.

Create a Configuration
When you click New, the new configuration inherits values and behavior
from the current configuration. Because of this inherited behavior and the
fact that the Intel Compiler is not supported by any of the adaptors available
in the Embedded IDE product; support for it can be added by cloning from
any of these configurations: msvs_host, mingw_host, montavista_arm and
gcc_host. These configurations provide an open framework and do not
contain behaviors from the supported adaptors.

Note The linker used by the Intel Compiler uses the Microsoft Visual Studio
tool chain and therefore the execution environment must have access to these
tools (vcvars.bat). For more information, see “Working with Microsoft® Visual
Studio” on page 4-4.

Open the XMakefile User Configuration UI by typing xmakefilesetup at the
MATLAB prompt. This action displays the following dialog box.

4-7

4 Generating Makefiles

Select an existing configuration, such as msvs_host, mingw_host,
montavista_arm or gcc_host. Click the New button.

A pop-up dialog prompts you for the name of the new configuration. Enter
intel_compiler and click OK.

The dialog box displays a new configuration called intel_compiler based on
msvs_host.

4-8

Example: Creating an XMakefile Configuration for the Intel Compiler

Modify the Configuration
Adjust the settings of the newly created configuration. This example assumes
the location of the Intel compiler is C:\Program Files\Intel\Compiler\.

Make Utility
You do not need to make any changes. This configuration uses the gmake
tool that ships with MATLAB.

4-9

4 Generating Makefiles

Compiler
For Compiler, enter the location of icl.exe in the Intel installation.

Linker
For Linker, enter the location of the linker executable, xilink.exe.

4-10

Example: Creating an XMakefile Configuration for the Intel Compiler

For Arguments, add the /LIBPATH path to the Intel libraries as shown here:

Archiver
For Archiver, enter the location of the archiver, xilib.exe. Confirm that
File extensions for library files includes .lib.

4-11

4 Generating Makefiles

Other tabs
For this example, ignore the remaining tabs. In other circumstances, you
can use them to configure additional build actions. For this example, the
generated executable will be used as the “execute” target and later on the
model used for testing will be configured to “Build_and_execute” on build
action (CTRL-B).

Test the Configuration
Open the “sumdiff” model by entering sumdiff on the MATLAB prompt.

4-12

Example: Creating an XMakefile Configuration for the Intel Compiler

Configure the model for use with the Eclipse IDE. First open the Eclipse
library by entering idelinklib_eclipseide at the MATLAB prompt.

Then drag and drop the “Target preferences” block onto the summdiff model.

4-13

4 Generating Makefiles

Open the Custom Board for Eclipse IDE target preferences block. Set
Processor to Intel x86/Pentium. Set Operating System to None or, if you
have the Target Support Package product, select Windows. Click OK.

4-14

Example: Creating an XMakefile Configuration for the Intel Compiler

Open the Configuration Parameters for the summdiff model by
pressing Ctrl+E. Set Build format to Makefile and Build action to
Build_and_execute.

4-15

4 Generating Makefiles

Save the model to a temporary location, such as C:\Temp\IntelTest\.

Set that location as a working folder by typing cd C:\temp\IntelTest\ at
the MATLAB prompt.

Build the model by pressing Ctrl+B. The MATLAB Command Window
displays something like:

TLC code generation complete.
Creating HTML report file sumdiff_codegen_rpt.html
Creating project: c:\temp\IntelTest\sumdiff_eclipseide\sumdiff.mk
Project creation done.
Building project...
Build done.
Downloading program: c:\temp\IntelTest\sumdiff_eclipseide\sumdiff
Download done.

A command window comes up showing the running model. Terminate the
generated executable by pressing Ctrl+C.

4-16

XMakefile User Configuration Dialog Box

XMakefile User Configuration Dialog Box

In this section...

“Active” on page 4-17

“Make Utility” on page 4-19

“Compiler” on page 4-20

“Linker” on page 4-21

“Archiver” on page 4-21

“Pre-build” on page 4-22

“Post-build” on page 4-23

“Execute” on page 4-23

“Tool Directories” on page 4-24

Active

4-17

4 Generating Makefiles

Template
Select the template that matches your toolchain and processor. The template
defines the syntax rules for writing the contents of the makefile or buildfile.
The factory default template is gmake, which works with the GNU® make
utility.

To add templates to this parameter, save them as .mkt files to the location
specified by the User Templates parameter. For more information, see
“User Templates” on page 4-19.

Configuration
Select the configuration that best describes your toolchain and embedded
processor platform.

You cannot edit or delete the factory default configurations provided by The
MathWorks™. You can, however, edit and delete the configurations that
you create.

Use the New button to create an editable copy of the currently selected
configuration.

Use the Delete button to delete a configuration you created.

Note You cannot edit or delete the factory default configurations provided
by The MathWorks.

Display operational configurations only
When you open the XMakefile User Configuration dialog box, the software
verifies that each factory default configuration contains valid paths to the
executable files it uses.

To display valid factory default configurations, select “Display operational
configurations only”. This option does not apply to configurations you create.

To display all of the configurations, including non-operational configurations,
deselect Display operational configurations only. The software

4-18

XMakefile User Configuration Dialog Box

categorizes a configuration as non-operational if a required resource is
missing. For more information, see “Making an XMakefile Configuration
Operational” on page 4-6.

User Templates
Set the path of the folder to which you can add template files. Saving
templates files with the .mkt extension to this folder adds them to the
Templates options.

User Configurations
Set the location of configuration files you create with the New button.

Make Utility

Make utility
Set the path and filename of the make utility executable.

Arguments
Define the command-line arguments to pass to the make utility. For more
information, consult the third-party documentation for your make utility.

Optional include
Set the path and file name of an optional include file.

4-19

4 Generating Makefiles

Compiler

Compiler
Set the path and file name of the compiler executable.

Arguments
Define the command-line arguments to pass to the compiler. For more
information, consult the third-party documentation for your compiler.

Source
Define the file name extension for the source files. Use commas to separate
multiple file extensions.

Header
Define the file name extension for the header files. Use commas to separate
multiple file extensions.

Object
Define the file name extension for the object files.

4-20

XMakefile User Configuration Dialog Box

Linker

Linker
Set the path and file name of the linker executable.

Arguments
Define the command-line arguments to pass to the linker. For more
information, consult the third-party documentation for your linker.

File extensions for library files
Define the file name extension for the file library files. Use commas to
separate multiple file extensions.

Generated output file extension
Define the file name extension for the generated libraries or executables.

Archiver

4-21

4 Generating Makefiles

Archiver
Set the path and file name of the archiver executable.

Arguments
Define the command-line arguments to pass to the archiver. For more
information, consult the third-party documentation for your archiver.

Generated output file extension
Define the file name extension for the generated libraries.

Pre-build

Enable Prebuild Step
Select this check box to define a prebuild tool that runs before the compiler.

Prebuild tool
Set the path and file name of the prebuild tool executable.

Arguments
Define the command-line arguments to pass to the prebuild tool. For more
information, consult the third-party documentation for your prebuild tool.

4-22

XMakefile User Configuration Dialog Box

Post-build

Enable Postbuild Step
Select this check box to define a postbuild tool that runs after the compiler
or linker.

Postbuild tool
Set the path and file name of the postbuild tool executable.

Arguments
Define the command-line arguments to pass to the postbuild tool. For more
information, consult the third-party documentation for your postbuild tool.

Execute

Use Default Execute Tool
Select this check box to use the generated derivative as the execute tool
when the build process is complete. Uncheck it to specify a different tool.

4-23

4 Generating Makefiles

The default value, echo, simply displays a message that the build process
is complete.

Note On Linux®, multirate multitasking executables require root privileges
to schedule POSIX threads with real-time priority. If you are using makefiles
to build multirate multitasking executables on your Linux development
system, you cannot use Execute tool to run the executable. Instead, use the
Linux command, sudo, to run the executable.

Execute tool
Set the path and file name of the execute tool executable or built-in command.

Arguments
Define the command-line arguments to pass to the execute tool. For more
information, consult the third-party documentation for your execute tool.

Tool Directories

Installation
Use the Tool Directories tab to change the toolchain path of an operational
configuration.

For example, if you installed two versions of an IDE in separate directories,
you can use the Installation path to change which IDE-related build tools
the configuration uses.

4-24

5

Verifying Generated Code

• “What Is Verification?” on page 5-2

• “Verifying Generated Code via Processor-in-the-Loop” on page 5-3

• “Profiling Code Execution in Real-Time” on page 5-10

• “System Stack Profiling” on page 5-18

5 Verifying Generated Code

What Is Verification?
Verification consists broadly of running generated code on a processor and
verifying that the code does what you intend. The components of Embedded
IDE Link combine to provide tools that help you verify your code during
development by letting you run portions of simulations on your hardware and
profiling the executing code.

Using the Automation Interface and Project Generator components,
Embedded IDE Link offers the following verification functions:

• Processor-in-the-Loop — A technique to help you evaluate how your process
runs on your processor

• Real-Time Task Execution Profiling — A tool that lets you see how the
tasks in your process run in real-time on your processor hardware

5-2

Verifying Generated Code via Processor-in-the-Loop

Verifying Generated Code via Processor-in-the-Loop

In this section...

“What is Processor-in-the-Loop?” on page 5-3

“Using the Top-Model PIL Approach” on page 5-5

“Using the PIL Block Approach” on page 5-6

“Definitions” on page 5-8

“Other Aspects of PIL” on page 5-9

“PIL Issues and Limitations” on page 5-9

What is Processor-in-the-Loop?
PIL is a feature of the Real-Time Workshop Embedded Coder product. To use
PIL in Embedded IDE Link, you must have a Real-Time Workshop Embedded
Coder license.

You can use processor-in-the-loop (PIL) simulation to verify your generated
code on a target processor or instruction set simulator. In PIL simulation,
the target processor participates fully in the simulation loop — hence the
term processor-in-the-loop simulation. You can compare the output of regular
simulation modes, such as Normal or Accelerator, and PIL simulation mode to
verify your generated code. You can easily switch between simulation and PIL
modes. This flexibility allows you to verify the generated code by executing
the model as compiled code in the target environment. You can model and
test your embedded software component in Simulink and then reuse your
regression test suites across simulation and compiled object code. This avoids
the time-consuming process of leaving the Simulink software environment to
run tests again on object code compiled for the production hardware.

For complete information about PIL, see “Verifying Compiled Object
Code with Processor-in-the-Loop Simulation”in the Real-Time Workshop
Embedded Coder User’s Guide. For an example of how to use PIL, see the
PIL: Fault-Tolerant Fuel Control System demo for your IDE.

Embedded IDE Link supports two PIL approaches:

5-3

5 Verifying Generated Code

• Top-model PIL

• PIL block

Embedded IDE Link does not support the “Model Block PIL” approach.

Note Processor-in-the-Loop (PIL) builds and uses a MEX function to run the
PIL cosimulation block. Before using PIL, set up a compiler for MATLAB to
build the MEX files. Run the command |mex -setup| to select a compiler
configuration. For more information, read “Building MEX-Files”

When to Use Top-Model PIL
Use top-model PIL if you want to:

• Verify code generated for a top model (standalone code interface).

• Load test vectors or stimulus inputs from the MATLAB workspace.

• Switch the entire model between normal and SIL or PIL simulation modes.

For more information, see “Choosing a PIL Approach”

When to Use the PIL Block
Use the PIL Block if you want to:

• Use a compiler and target environment supported by the Embedded IDE
Link product.

• Verify code generated for a top model (standalone code interface) or
subsystem (right-click build standalone code interface).

• Change the model and insert a PIL block to represent a component running
in SIL or PIL mode, and the test harness model or a system model provides
test vector or stimulus inputs.

For more information, see “Choosing a PIL Approach”.

5-4

Verifying Generated Code via Processor-in-the-Loop

Using the Top-Model PIL Approach

Setting Model Configuration Parameters to Generate the PIL
Application
Configure your model to generate the PIL executable from your model:

1 Add a Target Preferences block to your model from one of the following
libraries: , , , and .

2 Open the Target Preferences block and select your processor from the list
of processors. For more information, refer to Target Preferences/Custom
Board

3 From the model window, select Simulation > Configuration
Parameters.

4 In Configuration Parameters, select Real-Time Workshop.

5 Set System Target File to idelink_ert.tlc.

6 On the Select tree, choose Embedded IDE Link.

7 Set Build format to Project.

8 Set Build action to Create_processor_in_the_loop_project.

9 Click OK to close the Configuration Parameters dialog box.

Running the Top Model PIL Application
To create a PIL block, perform the following steps:

1 In the model window menu, select Simulation > Processor-in-the-loop.

2 In the model toolbar, click the Start simulation button.

A new model window opens and the new PIL model block appears in it. The
third-party IDE compiles and links the PIL executable file. Follow the
progress of the build process in the MATLAB command window.

5-5

5 Verifying Generated Code

Using the PIL Block Approach

Preparing Your Model to Generate a PIL Block
Start with a model that contains the algorithm blocks you want to verify on
the processor as compiled object code. To create a PIL application and PIL
block from your algorithm subsystem, follow these steps:

1 Identify the algorithm blocks to co-simulate.

2 Convert those blocks into an unmasked subsystem in your model.

For information about how to convert your process to a subsystem, refer to
Creating Subsystems in Using Simulink or in the online Help system.

3 Open the newly created subsystem and copy a Target Preferences block to
it from one of the following libraries: , , , and .

Open the Target Preferences block and select your processor from the list
of processors. For more information, refer to Target Preferences/Custom
Board

Setting Model Configuration Parameters to Generate the PIL
Application
After you create your subsystem, set the configuration parameters for your
model to enable the model to generate a PIL block.

Configure your model to enable it to generate PIL algorithm code and a PIL
block from your subsystem:

1 From the model menu bar, select Simulation > Configuration
Parameters. This opens Configuration Parameters dialog box.

2 On the Select tree, choose Real-Time Workshop.

3 Set System Target File to idelink_ert.tlc.

4 On the Select tree, choose Embedded IDE Link.

5 Set Build format to Project.

5-6

Verifying Generated Code via Processor-in-the-Loop

6 Set Build action to Create_processor_in_the_loop_project. The PIL
block action option appears.

7 Set PIL block action to Create_PIL_block_build_and_download.

8 Click OK to close the Configuration Parameters dialog box.

Creating the PIL Block Application from a Model Subsystem
To create a PIL block, perform the following steps:

1 Right-click the masked subsystem in your model and select Real-Time
Workshop > Build Subsystem from the context menu.

A new model window opens and the new PIL block appears in it. The
third-party IDE compiles and links the PIL executable file.

This step builds the PIL algorithm object code and a PIL block that
corresponds to the subsystem, with the same inputs and outputs. Follow
the progress of the build process in the MATLAB command window.

2 Copy the new PIL block from the new model to your model. To simulate
the subsystem processes concurrently, place it parallel to your masked
subsystem. Otherwise, replace the subsystem with the PIL block.

To see a PIL block in a parallel masked subsystem, see the Getting Started
with Application Development demo for your IDE among the demos.

Note Models can have multiple PIL blocks for different subsystems. They
cannot have more than one PIL block for the same subsystem. Including
multiple PIL blocks for the same subsystem causes errors and incorrect
results.

Running Your PIL Application to Perform Cosimulation and
Verification
After you add your PIL block to your model, click Simulation > Start to run
the PIL simulation and view the results.

5-7

5 Verifying Generated Code

Definitions
Cosimulation

The division of model simulation activities between a workstation and
embedded processor. The test harness runs on the workstation and drives
the inputs to the algorithm. The code generated from the algorithm runs
on the embedded processor.

PIL Algorithm

The algorithmic code, which corresponds to a subsystem or portion of a model,
to test during the PIL cosimulation. The PIL algorithm is in compiled object
form to enable verification at the object level.

PIL Application

The executable application that runs on the processor platform. Embedded
IDE Link creates a PIL application by augmenting your algorithmic code with
the PIL execution framework. The PIL execution framework code is then
compiled as part of your embedded application.

The PIL execution framework code includes the string.h header file so that the
PIL application can use the memcpy function. The PIL application uses memcpy
to exchange data between the Simulink model and the cosimulation processor.

PIL Block

When you build a subsystem from a model for PIL, the process creates a PIL
block optimized for PIL cosimulation. When you run the simulation, the PIL
block acts as the interface between the model and the PIL application running
on the processor. The PIL block inherits the shape and signal names from
the source subsystem in your model, as shown in the following example.
Inheritance is convenient for copying the PIL block into the model to replace
the original subsystem for cosimulation.

5-8

Verifying Generated Code via Processor-in-the-Loop

Other Aspects of PIL

PIL Issues and Limitations
Consider the following issues when you work with PIL blocks.

Generic PIL Issues
Refer to the Support Table section in the Real-Time Workshop Embedded
Coder documentation for general information about using the PIL block with
embedded link products. Refer to PIL Feature Support and Limitations.

Real-Time Workshop grt.tlc-Based Targets Not Supported
PIL does not support grt.tlc system target files.

To use PIL, set System target file option to idelink_ert.tlc. (The System
target file option is located on the Configuration Parameters > Real-Time
Workshop pane).

5-9

5 Verifying Generated Code

Profiling Code Execution in Real-Time

In this section...

“Overview” on page 5-10

“Profiling Execution by Tasks” on page 5-11

“Profiling Execution by Subsystems” on page 5-13

Overview
Real-time execution profiling in Embedded IDE Link software uses a set
of utilities to support profiling for synchronous and asynchronous tasks, or
atomic subsystems, in your generated code. These utilities record, upload, and
analyze the execution profile data.

Execution profiler supports profiling your code two ways:

• Tasks—Profile your project according to the tasks in the code.

• Atomic subsystems—Profile your project according to the atomic
subsystems in your model.

Note To perform execution profiling, you must generate your project from a
model in Simulink modeling environment.

When you enable profiling, you select whether to profile by task or subsystem.

To profile by subsystems, you must configure your model with at least one
atomic subsystem. To learn more about creating atomic subsystems, refer to
“Creating Subsystems” in the online help for Simulink software.

The profiler generates output in the following formats:

• Graphical display that shows task or subsystem activation, preemption,
resumption, and completion. All data appears in a MATLAB graphic with
the data notated by model rates or subsystems and execution time.

5-10

Profiling Code Execution in Real-Time

• An HTML report that provides statistical data about the execution of each
task or atomic subsystem in the running process.

These reports are identical to the reports you see if you use
profile(IDE_Obj,'execution','report') to view the execution results.
For more information about report formats, refer to profile. In combination,
the reports provide a detailed analysis of how your code runs on the processor.

Use this general process for profiling your project:

1 Create your model in Simulink modeling environment.

2 Enable execution profiling in the configuration parameters for your model.

3 Run your application.

4 Stop your application.

5 Get the profiling results with the profile function.

The following sections describe profiling your projects in more detail.

Profiling Execution by Tasks
To configure a model to use task execution profiling, perform the following
steps:

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link from the Select tree.

3 Select Profile real-time execution.

4 On the Profile by list, select Tasks to enable real-time task profiling.

5-11

5 Verifying Generated Code

5 By default, the Export IDE link handle to base workspace is enabled,
and the IDE link handle name is set to IDE_Obj.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use
IDE_obj.halt from the MATLAB command prompt. Gathering profiling
data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter

profile(handlename, execution , report)

5-12

Profiling Code Execution in Real-Time

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for information about other reporting options.

The following figure shows the profiling plot from running an application
that has three rates—the base rate and two slower rates. The gaps in the
Sub-Rate2 task bars indicate preempted operations.

Profiling Execution by Subsystems
When your models use atomic subsystems, you have the option of profiling
your code based on the subsystems along with the tasks.

To configure a model to use subsystem execution profiling, perform the
following steps:

5-13

5 Verifying Generated Code

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link from the Select tree. The pane appears as
shown in the following figure.

3 Select Profile real-time execution.

4 On the Profile by list, select Atomic subsystems to enable real-time
subsystem execution profiling.

5 By default, the Export IDE link handle to base workspace is enabled,
and the IDE link handle name is set to IDE_Obj.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

5-14

Profiling Code Execution in Real-Time

2 To stop the running program, select Debug > Halt in the IDE, or use
halt(handlename) from the MATLAB command prompt. Gathering profile
data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter:

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for more information.

The following figure shows the profiling plot from running an application that
has three subsystems—For Iterator Subsystem, For Iterator Subsystem1, and
Idle Task Subsystem.

5-15

5 Verifying Generated Code

The following figure presents the model that contains the subsystems reported
in the profiling plot.

5-16

Profiling Code Execution in Real-Time

Atomic Subsystem Profiling

To Workspace

simout

Rate Transition 3

Rate Transition 2

Rate Transition 1

Rate Transition

IdleTask
Subsystem

function ()Idle Task1
Idle Task

f()

Gain

.9

For Iterator
Subsystem1

for { ... } In 1Out 1

For Iterator
Subsystem

for { ... }In 1 Out 1

Feedback Gain

0.8

Constant

1

5-17

5 Verifying Generated Code

System Stack Profiling

In this section...

“Overview” on page 5-18

“Profiling System Stack Use” on page 5-20

Overview
Embedded IDE Link software enables you to determine how your application
uses the processor system stack. Using the profilemethod, you can initialize
and test the size and usage of the stack. This information can help you
optimize both the size of the stack and how your code uses the stack.

To provide stack profiling, profile writes a known pattern to the addresses
in the stack. After you run your application for a while, and then stop your
application, profile examines the contents of the stack addresses. profile
counts each address that no longer contains the known pattern as used. The
total number of address that have been used, compared to the total number of
addresses you allocated, becomes the stack usage profile. This profile process
does not tell you how often any address was changed by your application.

You can profile the stack with both the manually written code in a project and
the code you generate from a model.

Note With Texas Instruments CCS IDE, if your project uses DSP/BIOS,
stack profiling always reports 100% stack usage.

When you use profile to initialize and test the stack operation, the software
returns a report that contains information about stack size, usage, addresses,
and direction. With this information, you can modify your code to use the
stack efficiently. The following program listing shows the stack usage results
from running an application on a simulator.

profile(IDE_Obj,'stack','report')

Maximum stack usage:

5-18

System Stack Profiling

System Stack: 532/1024 (51.95%) MAUs used.

name: System Stack
startAddress: [512 0]

endAddress: [1535 0]
stackSize: 1024 MAUs

growthDirection: ascending

The following table describes the entries in the report:

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name assigned
to the stack.

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

endAddress Decimal address and
page

Lists the address of the
end of the stack and the
memory page.

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for the
stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

5-19

5 Verifying Generated Code

Profiling System Stack Use
To profile the system stack operation, perform these tasks in order:

1 Load an application.

2 Set up the stack to enable profiling.

3 Run your application.

4 Request the stack profile information.

Note With Texas Instruments CCS IDE, if your application initializes
the stack with known values when you run it, stack usage is reported as
100%. The value does not correctly reflect the stack usage. For example,
DSP/BIOS™ writes a fixed pattern to the stack (0x00C0FFEE) when you
run your project. This pattern prevents the stack profiler from reporting
the stack usage correctly. Disable DSP/BIOS to use stack profiling in your
project development.

Follow these steps to profile the stack as your application interacts with
it. This particular example uses a IDE handle object, IDE_Obj, for Texas
Instruments’ Code Composer Studio. However, you can generalize from this
example to any IDE that supports profiling.

1 Load the application to profile.

2 Use the profile method with the setup input keyword to initialize the
stack to a known state.

profile(IDE_Obj,'stack','setup')

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack. For example, the pattern for C6000
processors is A5, and for C2000 and C5000 processors is A5A5 (to account
for their address size). As long as your target application does not write
the same pattern to the system stack, profile can report the stack usage
correctly.

3 Run your application.

5-20

System Stack Profiling

4 Stop your running application. Stack use results gathered from an
application that is running may be incorrect.

5 Use the profile method to capture and view the results of profiling the
stack.

profile(IDE_Obj,'stack','report')

The following example demonstrates setting up and profiling the stack. The
IDE handle object, IDE_Obj, must exist in your MATLAB workspace and your
application must be loaded on your processor. This example comes from a
TI C6713 simulator.

profile(IDE_Obj,'stack','setup') % Set up processor stack--write A5 to the stack addresses.

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

run(IDE_Obj)

halt(IDE_Obj)

profile(IDE_Obj,'stack','report') % Request stack use report.

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

name: System Stack

startAddress: [512 0]

endAddress: [1535 0]

stackSize: 1024 MAUs

growthDirection: ascending

5-21

5 Verifying Generated Code

5-22

6

Block Reference

The blocks are grouped by library. To open the block library type the block
library command, shown in parentheses, at the MATLAB command line.

Block Library: idelinklib_common
(p. 6-2)

Blocks for use with ADI
VisualDSP++, GHS MULTI,
and TI Code Composer Studio

6 Block Reference

Block Library: idelinklib_common
Idle Task Create free-running task

Memory Allocate Allocate memory section

Memory Copy Copy to and from memory section

6-2

7

Blocks — Alphabetical List

Idle Task

Purpose Create free-running task

Library Block Library: idelinklib_common

Description The Idle Task block, and the subsystem connected to it, specify one
or more functions to execute as background tasks. All tasks executed
through the Idle Task block are of the lowest priority, lower than that of
the base rate task.

Vectorized Output

The block output comprises a set of vectors—the task numbers
vector and the preemption flag or flags vector. Any preemption-flag
vector must be the same length as the number of tasks vector unless
the preemption flag vector has only one element. The value of the
preemption flag determines whether a given interrupt (and task) is
preemptible. Preemption overrides prioritization. A lower-priority
nonpreemptible task can preempt a higher-priority preemptible task.

When the preemption flag vector has one element, that element value
applies to all functions in the downstream subsystem as defined by the
task numbers in the task number vector. If the preemption flag vector
has the same number of elements as the task number vector, each task
defined in the task number vector has a preemption status defined by
the value of the corresponding element in the preemption flag vector.

7-2

Idle Task

Dialog
Box

Task numbers
Identifies the created tasks by number. Enter as many tasks as
you need by entering a vector of integers. The default values
are [1,2] to indicate that the downstream subsystem has two
functions.

The values you enter determine the execution order of the
functions in the downstream subsystem, while the number of
values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be
from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem is executed, the value
of the second element determines the order in which the second
function in the subsystem is executed, and so on.

7-3

Idle Task

For example, entering [2,3,1] in this field indicates that there
are three functions to be executed, and that the third function
is executed first, the first function is executed second, and the
second function is executed third. After all functions are executed,
the Idle Task block cycles back and repeats the execution of the
functions in the same order.

Preemption flags
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Task numbers contains more than one task, you can assign
different preemption flags to each task by entering a vector of flag
values, corresponding to the order of the tasks in Task numbers.
If Task numbers contains more than one task, and you enter
only one flag value here, that status applies to all tasks.

In the default settings [0 1], the task with priority 1 in Task
numbers is not preemptible, and the priority 2 task can be
preempted.

Enable simulation input
When you select this option, Simulink software adds an input
port to the Idle Task block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

Note Select this check box to test asynchronous interrupt processing
behavior in Simulink software.

7-4

Memory Allocate

Purpose Allocate memory section

Library Block Library: idelinklib_common

Description On C2xxx, C5xxx, or C6xxx processors, this block directs the TI compiler
to allocate memory for a new variable you specify. Parameters in the
block dialog box let you specify the variable name, the alignment of the
variable in memory, the data type of the variable, and other features
that fully define the memory required.

The block does not verify whether the entries for your variable are
valid, such as checking the variable name, data type, or section. You
must ensure that all variable names are valid, that they use valid data
types, and that all section names you specify are valid as well.

The block does not have input or output ports. It only allocates a
memory location. You do not connect it to other blocks in your model.

Dialog
Box

The block dialog box comprises multiple tabs:

• Memory — Allocate the memory for storing variables. Specify the
data type and size.

• Section — Specify the memory section in which to allocate the
variable.

The dialog box images show all of the available parameters enabled.
Some of the parameters shown do not appear until you select one or
more other parameters.

7-5

Memory Allocate

The following sections describe the contents of each pane in the dialog
box.

7-6

Memory Allocate

Memory Parameters

You find the following memory parameters on this tab.

Variable name
Specify the name of the variable to allocate. The variable is
allocated in the generated code.

7-7

Memory Allocate

Specify variable alignment
Select this option to direct the compiler to align the variable in
Variable name to an alignment boundary. When you select this
option, theMemory alignment boundary parameter appears so
you can specify the alignment. Use this parameter and Memory
alignment boundary when your processor requires this feature.

Memory alignment boundary
After you select Specify variable alignment, this option enables
you to specify the alignment boundary in bytes. If your variable
contains more than one value, such as a vector or an array, the
elements are aligned according to rules applied by the compiler.

Data type
Defines the data type for the variable. Select from the list of types
available.

Specify data type qualifier
Selecting this enables Data type qualifier so you can specify the
qualifier to apply to your variable.

Data type qualifier
After you select Specify data type qualifier, you enter the
desired qualifier here. Volatile is the default qualifier. Enter
the qualifier you need as text. Common qualifiers are static and
register. The block does not check for valid qualifiers.

Data dimension
Specifies the number of elements of the type you specify in Data
type. Enter an integer here for the number of elements.

Initialize memory
Directs the block to initialize the memory location to a fixed value
before processing.

Initial value
Specifies the initialization value for the variable. At run time, the
block sets the memory location to this value.

7-8

Memory Allocate

Section Parameters

Parameters on this pane specify the section in memory to store the
variable.

Specify memory section
Selecting this parameter enables you to specify the memory
section to allocate space for the variable. Enter either one of the

7-9

Memory Allocate

standard memory sections or a custom section that you declare
elsewhere in your code.

Memory section
Identify a specific memory section to allocate the variable in
Variable name. Verify that the section has sufficient space
to store your variable. After you specify a memory section by
selecting Specify memory section and entering the section
name in Memory section, use Bind memory section to bind
the memory section to a location.

Bind memory section
After you specify a memory section by selecting Specify memory
section and entering the section name in Memory section,
use this parameter to bind the memory section to the location in
memory specified in Section start address. When you select
this, you enable the Section start address parameter.

The new memory section specified in Memory section is defined
when you check this parameter.

Note Do not use Bind memory section for existing memory
sections.

Section start address
Specify the address to which to bind the memory section. Enter
the address in decimal form or in hexadecimal with a conversion
to decimal as shown by the default value hex2dec('8000'). The
block does not verify the address—verify that the address exists
and can contain the memory section you entered in Memory
section.

See Also Memory Copy

7-10

Memory Copy

Purpose Copy to and from memory section

Library Block Library: idelinklib_common

Description In generated code, this block copies variables or data from and to
processor memory as configured by the block parameters. Your model
can contain as many of these blocks as you require to manipulate
memory on your processor.

Each block works with one variable, address, or set of addresses
provided to the block. Parameters for the block let you specify both
the source and destination for the memory copy, as well as options for
initializing the memory locations.

Using parameters provided by the block, you can change options like
the memory stride and offset at run time. In addition, by selecting
various parameters in the block, you can write to memory at program
initialization, at program termination, and at every sample time. The
initialization process occurs once, rather than occurring for every read
and write operation.

With the custom source code options, the block enables you to add
custom ANSI C source code before and after each memory read and
write (copy) operation. You can use the custom code capability to lock
and unlock registers before and after accessing them. For example,
some processors have registers that you may need to unlock and
lock with EALLOW and EDIS macros before and after your program
accesses them.

If your processor or board supports quick direct memory access (QDMA)
the block provides a parameter to check that implements the QDMA
copy operation, and enables you to specify a function call that can
indicate that the QDMA copy is finished. Only the C621x, C64xx, and
C671x processor families support QDMA copy.

Block Operations

This block performs operations at three periods during program
execution—initialization, real-time operations, and termination. With
the options for setting memory initialization and termination, you

7-11

Memory Copy

control when and how the block initializes memory, copies to and
from memory, and terminates memory operations. The parameters
enable you to turn on and off memory operations in all three periods
independently.

Used in combination with the Memory Allocate block, this block
supports building custom device drivers, such as PCI bus drivers or
codec-style drivers, by letting you manipulate and allocate memory.
This block does not require the Memory Allocate block to be in the
model.

In a simulation, this block does not perform any operation. The block
output is not defined.

Copy Memory

When you employ this block to copy an individual data element from
the source to the destination, the block copies the element from the
source in the source data type, and then casts the data element to the
destination data type as provided in the block parameters.

Dialog
Box

The block dialog box contains multiple tabs:

• Source — Identifies the sequential memory location to copy from.
Specify the data type, size, and other attributes of the source variable.

• Destination — Specify the memory location to copy the source to.
Here you also specify the attributes of the destination.

• Options— Select various parameters to control the copy process.

The dialog box images show many of the available parameters enabled.
Some parameters shown do not appear until you select one or more
other parameters. Some parameters are not shown in the figures, but
the text describes them and how to make them available.

7-12

Memory Copy

Sections that follow describe the parameters on each tab in the dialog
box.

7-13

Memory Copy

Source Parameters

Copy from
Select the source of the data to copy. Choose one of the entries
on the list:

• Input port— This source reads the data from the block input
port.

7-14

Memory Copy

• Specified address — This source reads the data at the
specified location in Specify address source and Address.

• Specified source code symbol — This source tells the
block to read the symbol (variable) you enter in Source code
symbol. When you select this copy from option, you enable the
Source code symbol parameter.

Note If you do not select Input port for Copy from, change
Data type from the default Inherit from source to one of
the data types on the Data type list. If you do not make the
change, you receive an error message that the data type cannot
be inherited because the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &src, indicating that the block expects the address to come
from the input port. Being able to change the address dynamically
lets you use the block to copy different variables by providing the
variable address from an upstream block in your model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and uses
valid syntax. Enter a string to specify the symbol exactly as you
use it in your code.

7-15

Memory Copy

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. The following
example converts Ox1000 to decimal form.

4096 = hex2dec('1000');

For this example, you could enter either 4096 or hex2dec('1000')
as the address.

Data type
Use this parameter to specify the type of data that your source
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from source for
inheriting the data type from the block input port.

Data length
Specifies the number of elements to copy from the source location.
Each element has the data type specified in Data type.

Use offset when reading
When you are reading the input, use this parameter to specify
an offset for the input read. The offset value is in elements with
the assigned data type. The Specify offset source parameter
becomes available when you check this option.

Specify offset source
The block provides two sources for the offset — Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when reading the input data.

7-16

Memory Copy

Offset
Offset tells the block whether to copy the first element of the
data at the input address or value, or skip one or more values
before starting to copy the input to the destination. Offset defines
how many values to skip before copying the first value to the
destination. Offset equal to one is the default value and Offset
accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for reading the input. By
default, the stride value is one, meaning the generated code reads
the input data sequentially. When you add a stride value that
is not equal to one, the block reads the input data elements not
sequentially, but by skipping spaces in the source address equal
to the stride. Stride must be a positive integer.

The next two figures help explain the stride concept. In the first
figure you see data copied without any stride. Following that
figure, the second figure shows a stride value of two applied
to reading the input when the block is copying the input to an
output location. You can specify a stride value for the output with
parameter Stride on the Destination pane. Compare stride with
offset to see the differences.

7-17

Memory Copy

7-18

Memory Copy

7-19

Memory Copy

Destination Parameters

Copy to
Select the destination for the data. Choose one of the entries on
the list:

• Output port— Copies the data to the block output port. From
the output port the block passes data to downstream blocks
in the code.

• Specified address— Copies the data to the specified location
in Specify address source and Address.

7-20

Memory Copy

• Specified source code symbol— Tells the block to copy the
variable or symbol (variable) to the symbol you enter in Source
code symbol. When you select this copy to option, you enable
the Source code symbol parameter.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &dst, indicating that the block expects the destination address
to come from the input port. Being able to change the address
dynamically lets you use the block to copy different variables by
providing the variable address from an upstream block in your
model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and
uses valid syntax.

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. This example
converts Ox2000 to decimal form.

8192 = hex2dec('2000');

7-21

Memory Copy

For this example, you could enter either 8192 or hex2dec('2000')
as the address.

Data type
Use this parameter to specify the type of data that your variable
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option inherit from source for
inheriting the data type for the variable from the block input port.

Specify offset source
The block provides two sources for the offset—Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when writing the output data.

Offset
Offset tells the block whether to write the first element of the
data to be copied to the first destination address location, or skip
one or more locations at the destination before writing the output.
Offset defines how many values to skip in the destination before
writing the first value to the destination. One is the default offset
value and Offset accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for copying the input to
the destination. By default, the stride value is one, meaning
the generated code writes the input data sequentially to the
destination in consecutive locations. When you add a stride value
not equal to one, the output data is stored not sequentially, but by
skipping addresses equal to the stride. Stride must be a positive
integer.

This figure shows a stride value of three applied to writing the
input to an output location. You can specify a stride value for the
input with parameter Stride on the Source pane. As shown in

7-22

Memory Copy

the figure, you can use both an input stride and output stride at
the same time to enable you to manipulate your memory more
fully.

Sample time
Sample time sets the rate at which the memory copy operation
occurs, in seconds. The default value Inf tells the block to use a
constant sample time. You can set Sample time to -1 to direct
the block to inherit the sample time from the input, if there is one,

7-23

Memory Copy

or the Simulink software model (when there are no input ports on
the block). Enter the sample time in seconds as you need.

7-24

Memory Copy

Options Parameters

7-25

Memory Copy

Set memory value at initialization
When you check this option, you direct the block to initialize
the memory location to a specific value when you initialize your
program at run time. After you select this option, use the Set
memory value at termination and Specify initialization
value source parameters to set your desired value. Alternately,
you can tell the block to get the initial value from the block input.

Specify initialization value source
After you check Set memory value at initialization, use this
parameter to select the source of the initial value. Choose either

• Specify constant value — Sets a single value to use when
your program initializes memory. Enter any value that meets
your needs.

• Specify source code symbol — Specifies a variable (a
symbol) to use for the initial value. Enter the symbol as a
string.

Initialization value (constant)
If you check Set memory value at initialization and choose
Specify constant value for Specify initialization value
source, enter the constant value to use in this field. Any real
value that meets your needs is acceptable.

Initialization value (source code symbol)
If you check Set memory value at initialization and choose
Specify source code symbol for Specify initialization value
source, enter the symbol to use in this field. Any symbol that
meets your needs and is in the symbol table for the program is
acceptable. When you enter the symbol, the block does not verify
whether the symbol is a valid one. If it is not valid you get an
error when you try to compile, link, and run your generated code.

Apply initialization value as mask
You can use the initialization value as a mask to manipulate
register contents at the bit level. Your initialization value is
treated as a string of bits for the mask.

7-26

Memory Copy

Checking this parameter enables the Bitwise operator
parameter for you to define how to apply the mask value.

To use your initialization value as a mask, the output from the
copy has to be a specific address. It cannot be an output port,
but it can be a symbol.

Bitwise operator
To use the initialization value as a mask, select one of the entries
on the following table from the Bitwise operator list to describe
how to apply the value as a mask to the memory value.

Bitwise
Operator List
Entry Description

bitwise AND Apply the mask value as a bitwise AND to
the value in the register.

bitwise OR Apply the mask value as a bitwise OR to
the value in the register.

bitwise
exclusive OR

Apply the mask value as a bitwise exclusive
OR to the value in the register.

left shift Shift the bits in the register left by
the number of bits represented by the
initialization value. For example, if your
initialization value is 3, the block shifts the
register value to the left 3 bits. In this case,
the value must be a positive integer.

right shift Shift the bits in the register to the right
by the number of bits represented by the
initialization value. For example, if your
initialization value is 6, the block shifts the
register value to the right 6 bits. In this
case, the value must be a positive integer.

7-27

Memory Copy

Applying a mask to the copy process lets you select individual
bits in the result, for example, to read the value of the fifth bit by
applying the mask.

Set memory value at termination
Along with initializing memory when the program starts to access
this memory location, this parameter directs the program to set
memory to a specific value when the program terminates.

Set memory value only at initialization/termination
This block performs operations at three periods during program
execution—initialization, real-time operations, and termination.
When you check this option, the block only does the memory
initialization and termination processes. It does not perform any
copies during real-time operations.

Insert custom code before memory write
Select this parameter to add custom ANSI C code before the
program writes to the specified memory location. When you select
this option, you enable the Custom code parameter where you
enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just before the memory write operation. Code you enter in this
field appears in the generated code exactly as you enter it.

Insert custom code after memory write
Select this parameter to add custom ANSI C code immediately
after the program writes to the specified memory location. When
you select this option, you enable the Custom code parameter
where you enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just after the memory write operation. Code you enter in this field
appears in the generated code exactly as you enter it.

7-28

Memory Copy

Use QDMA for copy (if available)
For processors that support quick direct memory access (QDMA),
select this parameter to enable the QDMA operation and to access
the blocking mode parameter.

If you select this parameter, your source and destination data
types must be the same or the copy operation returns an error.
Also, the input and output stride values must be one.

Enable blocking mode
If you select the Use QDMA for copy parameter, select this
option to make the memory copy operations blocking processes.
With blocking enabled, other processing in the program waits
while the memory copy operation finishes.

See Also Memory Allocate

7-29

Target Preferences/Custom Board

Purpose Configure model for a supported processor

Library Block library: idelinklib_adivdsp

Block library: idelinklib_ghsmulti

Block library: idelinklib_ticcs

Block library: idelinklib_eclipseide

Description Use this block to configure hardware settings and code generation
features for your custom board. Include this block in models you use to
generate Real-Time Workshop code to run on processors and boards.
It does not connect to any other blocks, but stands alone to set the
processor preferences for the model.

Tip Place only one Target Preferences block in your model.

When you are generating code for a model, place the Target Preferences
block at the top level of your model.

When you are generating code for a subsystem, place the Target
Preferences block at the subsystem level of your model.

Setting the Target Preference block options identifies your processor
and board to Real-Time Workshop software, Embedded IDE Link, and
Simulink software. Setting the options also configures the memory map
for your processor.

Click Yes when you drag and drop the Target Preferences/Custom
Board block to your model and you get a prompt to “set the model
configuration parameter to the default values”? For example:

7-30

Target Preferences/Custom Board

If you select No, the settings may be incorrect. If you build the model
with the incorrect settings, the software generates error messages.

Generating Code from Model Subsystems

Real-Time Workshop software provides the ability to generate code
from a selected subsystem in a model. To generate code for custom
hardware from a subsystem, the subsystem model must include a
Target Preferences block.

Dialog
Boxes

This reference page section contains the following subsections:

• “Board Pane” on page 7-32

• “Memory Pane” on page 7-37

• “Sections Pane” on page 7-40

• “DSP/BIOS Pane” on page 7-43

• “Peripherals Pane” on page 7-47

• “Add Processor Dialog Box” on page 7-96

Target Preferences block dialog boxes provide tabbed access to the
following panes with options you set for the processor and board:

• Board Pane — Select the processor, set the clock speed, and identify
the processor. In addition, Add new on this pane opens the New
Processor dialog box.

• Memory Pane — Set the memory allocation and layout on the
processor (memory mapping).

7-31

Target Preferences/Custom Board

• Sections Pane — Determine the arrangement and location of the
sections on the processor and compiler information.

• DSP/BIOS Pane — With Texas Instruments CCS IDE and C6000
processors: Specify how to configure tasking features of DSP/BIOS.

• Peripherals Pane — With Texas Instruments CCS IDE and C2000
processors: Specify how to configure the peripherals provided
by C2xxx processors, such as the SPI_A, SPI_B, GPIO, or eCAP
peripherals.

Board Pane

7-32

Target Preferences/Custom Board

The following options appear on the Board pane, under the Board
Properties, Board Support, and IDE Support labels.

Board type
Enter the type of your target board. Enter Custom to support any
board that uses a processor on the Processor list, or enter the
name of a supported board. If you are using one of the explicitly
supported boards, choose the Target Preferences/Custom Board
block for that board from the Simulink .

Processor
Select the target processor type. This action applies default
values to many of the remaining settings, such as those under
the Memory and Section tabs.

If the Embedded IDE Link product supports an operating system
for the processor, it enables the Operating system option.

Add New
Clicking Add new opens a new dialog box where you specify
configuration information for a processor that is not on the
Processor list.

For details about the New Processor dialog box, refer to “Add
Processor Dialog Box” on page 7-96.

Delete
Delete a processor that you added to the Processor list. You
cannot delete processors that you did not add.

CPU Clock (MHz)
Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting the actual
clock rate produces code that runs correctly on the hardware.
Setting this value incorrectly causes timing and profiling errors
when you run the code on the hardware.

The timer uses the value of CPU clock to calculate the time for
each interrupt. For example, a model with a sine wave generator

7-33

Target Preferences/Custom Board

block running at 1 kHz uses timer interrupts to generate sine
wave samples at the proper rate. For example, using 100 MHz,
the timer calculates the sine generator interrupt period as follows:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires:

100,000,000/1000 = 1 Sine block interrupt per 100,000 clock ticks

Thus, report the correct clock rate, or the interrupts come at the
wrong times and the results are incorrect.

Board Support
Select the following parameters and edit their values in the text
box on the right:

• Source files— Enter the full paths to source code files.

• Include paths— Add paths to include files.

• Libraries — Identify specific libraries for the processor.
Required libraries appear on the list by default. To add more
libraries, entering the full path to the library with the library
file in the text area.

• Initialize functions— If your project requires an initialize
function, enter it in this field. By default, this parameter is
empty.

• Terminate functions — Enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

7-34

Target Preferences/Custom Board

Note Invalid or incorrect entries in these fields can cause errors
during code generation. When you enter a file path, library, or
function, the block does not verify that the path or function exists
or is valid.

When entering a path to a file, library, or other custom code, use
the following string in the path to refer to the the IDE installation
directory.

$(install_dir)

Enter new paths or files (custom code items) one entry per line.
Include the full path to the file for libraries and source code.
Board custom code options do not support functions that use
return arguments or values. Only functions of type void fname
void are valid as entries in these parameters.

Operating System
If you select a processor for which the Embedded IDE Link
product provides support, Embedded IDE Link enables the
Operating system option. You can select an operating system
for your model.

For more information about using Eclipse IDE to run target
applications on Windows or Linux, see “Supported Operating
Systems”.

For more information about using CCS IDE to run target
applications on DSP/BIOS, see “Targeting with DSP/BIOS
Options”.

Get from IDE
Import the boards and processors defined in the Code Composer
Studio and VisualDSP++ IDEs. This information populates the
Board name and Processor name options. Click the Apply
button to make this information available in the other options.

7-35

Target Preferences/Custom Board

This feature does not work if you do not have an IDE or your IDE
does not support this feature.

Board name
Board name appears after you click Get from IDE. Select the
board you are using. Match Board name with the Board Type
option near the top of the Board pane.

Processor name
Processor name appears after you click Get from IDE. If the
board you selected in Board name has multiple processors, select
the processor you are using. MatchProcessor name with the
Processor option near the top of the Board pane.

Note Click Apply to update the board and processor description under
IDE Support.

7-36

Target Preferences/Custom Board

Memory Pane

After selecting a board, specify the layout of the physical memory on
your processor and board to determine how to use it for your program.
For supported boards, the board-specific Target Preferences blocks set
the default memory map.

The Memory pane contains memory options for:

• Physical Memory— Specifies the processor and board memory map

7-37

Target Preferences/Custom Board

• Cache Configuration — Select a cache configuration where
available, such as L2 cache, and select one of the corresponding
configuration options, such as 32 kb.

For more information about memory segments and memory allocation,
consult the reference documentation for the IDE or processor.

The Physical Memory table shows the memory segments (or “memory
banks”) available on the board and processor. By default, Target
Preferences blocks show the memory segments found on the selected
processor. In addition, the Memory pane on preconfigured Target
Preferences blocks shows the memory segments available on the
board, but external to the processor. Target Preferences blocks set
default starting addresses, lengths, and contents of the default memory
segments.

Click Add to add physical memory segments to the Memory banks
table.

After you add the segment, you can configure the starting address,
length, and contents for the new segment.

Name
To change the memory segment name, click the name and type
the new name. Names are case sensitive. NewSegment is not the
same as newsegment or newSegment.

Note You cannot rename default processor memory segments
(name in gray text).

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

7-38

Target Preferences/Custom Board

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs).

Contents
Configure the segment to store Code, Data, or Code & Data.
Changing processors changes the options for each segment.

You can add and use as many segments of each type as you
need, within the limits of the memory on your processor. Every
processor must have a segment that holds code, and a segment
that holds data.

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Memory banks table.
In Name, change the temporary name NEWMEM1 by entering the
new segment name. Entering the new name, or clicking Apply,
updates the temporary name on the table to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Memory banks table
and click Remove to delete the segment.

Cache (Configuration)
When the Processor on the Board pane supports an L2 cache
memory structure, the dialog box displays a table of Cache
parameters. You can use this table to configure the cache as
SRAM and partial cache. Both the data memory and the program
share this second-level memory.

If your processor supports the two-level memory scheme, this
option enables the L2 cache on the processor.

7-39

Target Preferences/Custom Board

Some processors support code base memory organization. For
example, you can configure part of internal memory as code.

Cache level lets you select one of the available cache levels to
configure by selecting one of its configurations. For example, you
can select L2 cache level and choose one of its configurations, such
as 32 kb.

Sections Pane

Options on this pane specify where program sections go in memory.
Program sections are distinct from memory segments—sections are

7-40

Target Preferences/Custom Board

portions of the executable code stored in contiguous memory locations.
Commonly used sections include .text, .bss, .data, and .stack. Some
sections relate to the compiler and some can be custom sections.

For more information about program sections and objects, refer to the
online help for your IDE.

Within the Sections pane, you configure the allocation of sections for
Compiler and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections and Custom sections lists in the pane. All
sections do not appear on all lists.

String
Section
List Description of the Section Contents

.bss Compiler Static and global C variables in the code

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.pinit Compiler Load allocation of the table of global
object constructors section

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements in
the executable code

7-41

Target Preferences/Custom Board

String
Section
List Description of the Section Contents

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

You can learn more about memory sections and objects in the online
help for your IDE.

Default Sections
When you highlight a section on the list, Description show a
brief description of the section. Also, Placement shows you the
memory allocation of the section.

Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows the allocation of the selected Compiler sections entry
in memory. You change the memory allocation by selecting a
different location from the Placement list. The list contains the
memory segments as defined in the physical memory map on
the Memory pane. Select one of the listed memory segments to
allocate the highlighted compiler section to the segment.

To see a description of the placement item, hover your mouse
pointer over the item for a few moments.

Custom Sections
If your program uses code or data sections that are not in the
Compiler sections, add the new sections to Custom sections.

Sections
This window lists data sections that are not in the Compiler
sections.

7-42

Target Preferences/Custom Board

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Name
Enter the name of the new section here. To add a new section,
click Add. Then, replace the temporary name with the name
to use. Although the temporary name includes a period at the
beginning you do not need to include the period in your new
name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Contents
Identify whether the contents of the new section are Code, Data,
or Any.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

The DSP/BIOS pane is available if the two following conditions are true:

• You are using Texas Instruments CCS IDE.

• You set the target preferences block Processor option to a C6000
processors that support DSP/BIOS.

7-43

Target Preferences/Custom Board

Selecting DSP/BIOS for Operating system on the Board Info pane
enables this pane.

Use the Heap, Placement, and TSK task manager properties
sections of this pane to configure various modules of DSP/BIOS.

For more information about tasks, refer to the Code Composer Studio
online help.

Note To enable the Heap option, select DSP/BIOS for Operating
system on the Board Info pane.

7-44

Target Preferences/Custom Board

Heap
The heap section contains the Create, Label, and Size options to
manage the heap.

Create
If your processor supports using a heap, selecting this option
enables creating the heap. Define the heap using the Label and
Size options. Create is not available for processors that do not
provide a heap or do not allow you to configure the heap.

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in
a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Size
After you select Create, this option lets you specify the size of the
heap in words. Enter the number of words in decimal format.
When you enter the heap size in decimal words, the system
converts the decimal value to hexadecimal format. You can enter
the value directly in hexadecimal format as well. Processors can
support different maximum heap sizes.

Label
Selecting Create enables this option. Enter your label for the
heap in the Heap option.

Note When you enter a label, the block does not verify that the
label is valid. An invalid label in this field can cause errors during
code generation.

Placement
Use the Data object and Code object options in Placement to
configure the memory allocation of the selected Heap list entry.

7-45

Target Preferences/Custom Board

Data object
Specify where to place new data objects in memory.

Code object
Specify where to place new code objects in memory.

TSK task manager properties
Use the Default stack size (bytes), Stack segment for static
tasks, and Stack segment for dynamic tasks options in
TSK task manager properties to configure the task manager
properties.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. The software sets the default value to 4096 bytes. You can
set any size up to the limits for the processor. Set the stack size so
that tasks do not use more memory than you allocate. Exceeding
the stack memory size can cause the task to write into other
memory or data areas, causing unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Tasks that your program uses often are good candidates
for static tasks. Infrequently used tasks usually work best as
dynamic tasks.

The list offers IDRAM for locating the stack in memory. The
Memory pane provides more options for the physical memory on
the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, MEM_NULL is the only valid stack location in memory.
Allocate system heap storage to use this option. Specify the
system heap configuration on the “Memory Pane” on page 7-37.

7-46

Target Preferences/Custom Board

Peripherals Pane

The Peripherals pane is only visible in Target Preference blocks
configured for C2000 processors. This tabbed pane appears to configure
peripheral settings and pin assignments.

7-47

Target Preferences/Custom Board

You must have Target Support Package installed to enable this pane
when you select a C2000 processor.

To set the attributes for a peripheral, select the peripheral from the
Peripherals list and then set the attribute options on the right side.

The following table describes all the peripherals provided on the
Peripherals list. Some peripherals are not available on some C2000
processors.

Peripheral
Name

Description

ADC Report the settings for the Analog-to-Digital Converter

eCAN_A Report or set the enhanced Controller Area Network
parameters for module A

eCAN_B Report or set the enhanced Controller Area Network
parameters for module B

eCAP Report or assign enhanced CAPture module pins to
general purpose IO pins

ePWM Report or assign enhanced Pulse Width Modulation
pins to general purpose IO pins

I2C Report or set Inter-Integrated Circuit parameters

SCI_A Report or set the Serial Communications Interface
parameters for module A

SCI_B Report or set the Serial Communications Interface
parameters for module B

SCI_C Report or set the Serial Communications Interface
parameters for module C

SPI_A Report or set the Serial Peripheral Interface
parameters for module A

SPI_B Report or set the Serial Peripheral Interface
parameters for module B

7-48

Target Preferences/Custom Board

Peripheral
Name

Description

SPI_C Report or set the Serial Peripheral Interface
parameters for module C

SPI_D Report or set the Serial Peripheral Interface
parameters for module D

eQEP Report or assign enhanced Quadrature Encoder Pulse
module pins to general purpose IO pins

Watchdog Enable and configure timing for watchdog module

GPIO[pin#] Configure input qualification types for General
Purpose Input Output pins

Flash_loader Enable and configure flash memory programmer.
Manually program flash

DMA_ch[#] Enable and configure Direct Memory Access channels

PLL Adjust clock settings to match custom oscillator
frequencies

7-49

Target Preferences/Custom Board

ADC

The high-speed peripheral clock (HSPCLK) controls the internal
timing of the ADC module. The ADC derives the operating clock
speed from the HSPCLK speed in several prescaler stages. For more
information about configuring these scalers, refer to “Configuring ADC

7-50

Target Preferences/Custom Board

Parameters for Acquisition Window Width” in the Target Support
Package documentation.

You can set the following parameters for the ADC clock prescaler:

ACQ_PS
This value does not actually have a direct effect on the core
clock speed of the ADC. It serves to determine the width of the
sampling or acquisition period. The higher the value, the wider is
the sampling period. The default value is 4.

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first step
in deriving the core clock speed of the ADC. The default value is 3.

CPS
After dividing the HSPCLK speed by the ADCLKPS value,
setting the CPS parameter to 1, the default value, divides the
result by 2.

Use external reference 2.048V
By default, an internally generated band gap voltage reference
supplies the ADC logic. However, depending on application
requirements, you can enable External reference so the ADC
logic uses an external voltage reference instead. Select the
checkbox to use a 2.048V external voltage reference.

Offset
The 280x ADC supports offset correction via a 9-bit value that
it adds or subtracts before the results are available in the ADC
result registers. Timing for results is not affected. The default
value is 0.

VREFHI
VREFLO

(For Piccolo processors) When you disable the External
reference option, the ADC logic uses a fixed 0-volt to 3.3-volt
input range and the software disables VREFHI and VREFLO.
To interpret the ADC input as a ratiometric signal, select the
External reference option. Then set values for the high voltage

7-51

Target Preferences/Custom Board

reference (VREFHI) and the low voltage reference (VREFLO).
VREFHI uses the external ADCINA0 pin, and VREFLO uses
the internal GND.

INT pulse control
(For Piccolo processors) Use this option to configure when the ADC
sets ADCINTFLG .ADCINTx relative to the SOC and EOC Pulses.
Select Late interrupt pulse or Early interrupt pulse.

SOC high priority
(For Piccolo processors) Use this option to enable and configure
SOC high priority mode . In All in round robin mode,
the default selection, the ADC services each SOC interrupt in a
numerical sequence.

Choose one of the high priority selections to assign high
priority to one or more of the SOCs. In this mode, the ADC
operates in round robin mode until it receives a high priority SOC
interrupt. The ADC finishes servicing the current SOC, services
the high priority SOCs, and then returns to the next SOC in the
round robin sequence.

For example, the ADC is servicing SOC8 when it receives a high
priority interrupt on SOC1. The ADC completes servicing SOC8,
services SOC1, and then services SOC9.

XINT2SOC
(For Piccolo processors) Select the pin to which the ADC sends the
XINT2SOC pulse.

7-52

Target Preferences/Custom Board

eCAN_A, eCAN_B

For more help on setting the timing parameters for the eCAN modules,
refer to Configuring Timing Parameters for CAN Blocks. You can set
the following parameters for the eCAN module:

7-53

Target Preferences/Custom Board

Baud rate prescaler
Value by which to scale the bit rate. Valid values are from 1 to
256.

SAM
Number of samples used by the CAN module to determine the
CAN bus level. Selecting Sample_one_time samples once at the
sampling point. Selecting Sample_three_times samples once at
the sampling point and twice before at a distance of TQ/2. The
CAN module makes a majority decision from the three points.

SBG
Sets the message resynchronization triggering. Options are
Only_falling_edges and Both_falling_and_rising_edges.

SJW
Sets the synchronization jump width, which determines how
many units of TQ a bit can be shortened or lengthened when
resynchronizing.

Self test mode
If you set this parameter to True, the eCAN module goes to
loopback mode. Loopback mode sends a “dummy” acknowledge
message back without needing an acknowledge bit. The default is
False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and Baud
rate prescaler, determines the length of a bit on the eCAN bus.
Valid values for TSEG1 are from 1 through 16.

TSEG2
Sets the value of time segment 2, which, with TSEG1 and Baud
rate prescaler, determines the length of a bit on the eCAN bus.
Valid values for TSEG2 are from 1 through 8.

Pin assignment (Rx)
Assigns the CAN receive pin to use with the eCAN_B module.
Possible values are GPIO10, GPIO13, GPIO17, and GPIO21.

7-54

Target Preferences/Custom Board

Pin assignment (Tx)
Assigns the CAN transmit pin to use with the eCAN_B module.
Possible values are GPIO8, GPIO12, GPIO16, and GPIO20.

eCAP

7-55

Target Preferences/Custom Board

Assigns eCAP pins to GPIO pins if required.

ECAP1 pin assignment
Select an option from the list—None, GPIO5, or GPIO24.

ECAP2 pin assignment
Select an option from the list—None, GPIO7, or GPIO25.

ECAP3 pin assignment
Select an option from the list—None, GPIO9, or GPIO26.

ECAP4 pin assignment
Select an option from the list—None, GPIO11, or GPIO27.

7-56

Target Preferences/Custom Board

ePWM

Assigns ePWM signals to GPIO pins, if required.

SYNCI pin assignment
Assigns the ePWM external sync pulse input (SYNCI) to a GPIO
pin. Choices are None (the default), GPIO6, and GPIO32.

SYNCO pin assignment
Assigns the ePWM external sync pulse output (SYNCO) to a GPIO
pin. Choices are None (the default), GPIO6, and GPIO33.

7-57

Target Preferences/Custom Board

TZ2 pin assignment
Assigns the trip-zone input 2 (TZ2) to a GPIO pin. Choices are
None (the default), GPIO16, and GPIO28.

TZ3 pin assignment
Assigns the trip-zone input 3 (TZ3) to a GPIO pin. Choices are
None (the default), GPIO17, and GPIO29.

TZ5 pin assignment
Assigns the trip-zone input 5 (TZ5) to a GPIO pin. Choices are
None (the default), GPIO16, and GPIO28.

TZ6 pin assignment
Assigns the trip-zone input 6 (TZ6) to a GPIO pin. Choices are
None (the default), GPIO17, and GPIO29.

7-58

Target Preferences/Custom Board

I2C

Report or set Inter-Integrated Circuit parameters. For more
information, consult the TMS320x280x Inter-Integrated Circuit Module
Reference Guide, Literature Number: SPRU721A, available on the
Texas Instruments Web site.

Mode
Configure the I2C module as Master or Slave.

7-59

Target Preferences/Custom Board

If a module is an I2C master, it:

Initiates communication with slave nodes by sending the slave
address and requesting data transfer to or from the slave.

Outputs the Master clock frequency on the serial clock line
(SCL) line.

If a module is an I2C slave, it:

• Synchronizes itself with the serial clock line (SCL) line.

• Responds to communication requests from the master.
WhenMode is Slave, you can configure the Addressing format,
Address register, and Bit count parameters.

The Mode parameter corresponds to bit 10 (MST) of the I2C
Mode Register (I2CMDR).

Addressing format
If Mode is Slave, determine the addressing format of the I2C
master, and set the I2C module to the same mode:

• 7-Bit Addressing, the normal address mode.

• 10-Bit Addressing, the expanded address mode.

• Free Data Format, a mode that does not use addresses. (If you
Enable loopback, the Free data format is not supported.)

The Addressing format parameter corresponds to bit 3 (FDF)
and bit 8 (XA) of the I2C Mode Register (I2CMDR).

Own address register
If Mode is Slave, enter the 7-bit (0–127) or 10-bit (0–1023)
address this I2C module uses while it is a slave.

This parameter corresponds to bits 9–0 (OAR) of the I2C Own
Address Register (I2COAR).

7-60

Target Preferences/Custom Board

Bit count
If Mode is Slave, set the number of bits in each data byte the
I2C module transmits and receives. This value must match that
of the I2C master.

This parameter corresponds to bits 2–0 (BC) of the I2C Mode
Register (I2CMDR).

Module clock frequency
This field displays the frequency the I2C module uses internally.
To set this value, change theModule clock prescaler. For more
information about this value, consult the “Formula for the Master
Clock Period” section in the TMS320x280x Inter-Integrated
Circuit Module Reference Guide, Literature Number: SPRU721,
available on the Texas Instruments Web site.

Master clock frequency
This field displays the master clock frequency. For more
information about this value, consult the “Clock Generation”
section in the TMS320x280x Inter-Integrated Circuit Module
Reference Guide, Literature Number: SPRU721, available on the
Texas Instruments Web site.

Module clock prescaler
If Mode is Master, configure the module clock frequency by
entering a value from 0–255.

Module clock frequency = I2C input clock frequency / (Module clock
prescaler + 1)

The I2C specifications require a module clock frequency between
7 MHz and 12 MHz.

The I2C input clock frequency depends on the DSP input clock
frequency and the value of the PLL Control Register divider
(PLLCR). For more information on setting the PLLCR, consult the
documentation for your specific Digital Signal Controller.

7-61

Target Preferences/Custom Board

ThisModule clock prescaler corresponds to bits 7–0 (IPSC) of
the I2C Prescaler Register (I2CPSC).

Master clock Low-time divider
When Mode is Master, this divider determines the duration of
the low state of the SCL line on the I2C-bus.

The low-time duration of the master clock = Tmod x (ICCL + d).

For more information about this value, consult the “Formula
for the Master Clock Period” section in the TMS320x280x
Inter-Integrated Circuit Module Reference Guide, Literature
Number: SPRU721A, available on the Texas Instruments Web
site.

This parameter corresponds to bits 15–0 (ICCL) of the Clock
Low-Time Divider Register (I2CCLKL).

Master clock High-time divider
When Mode is Master, this divider determines the duration of
the high state on the serial clock pin (SCL) of the I2C-bus.

The high-time duration of the master clock = Tmod x (ICCL + d).

For more information about this value, consult the “Formula
for the Master Clock Period” section in the TMS320x280x
Inter-Integrated Circuit Module Reference Guide, Literature
Number: SPRU721A, available on the Texas Instruments Web
site.

This parameter corresponds to bits 15–0 (ICCH) of the Clock
High-Time Divider Register (I2CCLKH).

Enable loopback
When Mode is Master, enable or disable digital loopback mode.
In digital loopback mode, I2CDXR transmits data over an internal
path to I2CDRR, which receives the data after a configurable

7-62

Target Preferences/Custom Board

delay. The delay, measured in DSP cycles, equals (I2C input clock
frequency/module clock frequency) x 8.

While Enable loopback is enabled, free data format addressing
is not supported.

This parameter corresponds to bit 6 (DLB) of the I2C Mode
Register (I2CMDR).

Enable Tx Interrupt
This parameter corresponds to bit 5 (TXFFIENA) of the I2C
Transmit FIFO Register (I2CFFTX).

Tx FIFO interrupt level
This parameter corresponds to bits 4–0 (TXFFIL4-0) of the I2C
Transmit FIFO Register (I2CFFTX).

Enable Rx interrupt
This parameter corresponds to bit 5 (RXFFIENA) of the I2C
Receive FIFO Register (I2CFFRX).

Rx FIFO interrupt level
This parameter corresponds to bit 4–0 (RXFFIL4-0) of the I2C
Receive FIFO Register (I2CFFRX).

Enable system interrupt
Select this parameter to display and individually configure the
following five Basic I2C Interrupt Request parameters in the
Interrupt Enable Register (I2CIER):

• Enable AAS interrupt

• Enable SCD interrupt

• Enable ARDY interrupt

• Enable NACK interrupt

• Enable AL interrupt

Enable AAS interrupt
Enable the addressed-as-slave interrupt.

7-63

Target Preferences/Custom Board

When enabled, the I2C module generates an interrupt (AAS bit =
1) upon receiving one of the following:

• Its Own address register

• A general call (all zeros)

• A data byte is in free data format

When enabled, the I2C module clears the interrupt (AAS = 0)
upon receiving one of the following:

• Multiple START conditions (7-bit addressing mode only)

• A slave address that is different from Own address register
(10-bit addressing mode only)

• A NACK or a STOP condition

This parameter corresponds to bit 6 (AAS) of the Interrupt Enable
Register (I2CIER).

Enable SCD interrupt
Enable stop condition detected interrupt.

When enabled, the I2C module generates an interrupt (SCD bit =
1) when the CPU detects a stop condition on the I2C bus.

When enabled, the I2C module clears the interrupt (SCD = 0)
upon one of the following events:

• The CPU reads the I2CISRC while it indicates a stop condition

• A reset of the I2C module

• Someone manually clears the interrupt

This parameter corresponds to bit 5 (SCD) of the Interrupt Enable
Register (I2CIER).

Enable ARDY interrupt
Enable register-access-ready interrupt enable bit.

7-64

Target Preferences/Custom Board

When enabled, the I2C module generates an interrupt (ARDY bit
= 1) when the previous address, data, and command values in
the I2C module registers have been used and new values can be
written to the I2C module registers.

This parameter corresponds to bit 2 (ARDY) of the Interrupt
Enable Register (I2CIER).

Enable NACK interrupt
Enable no-acknowledgment interrupt enable bit.

When enabled, the I2C module generates an interrupt (NACK bit
= 1) when the module is a transmitter in master or slave mode
and it receives a NACK condition.

This parameter corresponds to bit 1 (NACK) of the Interrupt
Enable Register (I2CIER).

Enable AL interrupt
Enable arbitration-lost interrupt.

When enabled, the I2C module generates an interrupt (AL bit = 1)
when the I2C module is operating as a master transmitter and
looses an arbitration contest with another master transmitter.

This parameter corresponds to bit 0 (AL) of the Interrupt Enable
Register (I2CIER).

7-65

Target Preferences/Custom Board

SCI_A, SCI_B

The serial communications interface parameters you can set for module
A. These parameters are:

Baud rate
Baud rate for transmitting and receiving data. Select from 115200
(the default), 57600, 38400, 19200, 9600, 4800, 2400, 1200, 300,
and 110.

Blocking Mode
If this option is set to True, system waits until data is available
to read (when data length is reached). If this option is set to
False, system checks FIFO periodically (in polling mode) to see if

7-66

Target Preferences/Custom Board

there is any data to read. If data is present, it reads and outputs
the contents. If no data is present, it outputs the last value and
continues.

Character length bits
Length in bits of each transmitted or received character, set to
8 bits.

Communication mode
Select Raw_data or Protocol mode. Raw data is unformatted
and sent whenever the transmitting side is ready to send,
whether the receiving side is ready or not. No deadlock condition
can occur because there is no wait state. Data transmission is
asynchronous. With this mode, it is possible the receiving side
could miss data, but if the data is noncritical, using raw data
mode can avoid blocking any processes.

When you select protocol mode, some handshaking between host
and processor occurs. The transmitting side sends $SND to
indicate it is ready to transmit. The receiving side sends back
$RDY to indicate it is ready to receive. The transmitting side then
sends data and, when the transmission is completed, it sends a
checksum.

Advantages to using protocol mode include:

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is received by processor

• Ensures time consistency; each side waits for its turn to send
or receive

7-67

Target Preferences/Custom Board

Note Deadlocks can occur if one SCI Transmit block tries to
communicate with more than one SCI Receive block on different
COM ports when both are blocking (using protocol mode).
Deadlocks cannot occur on the same COM port.

Data byte order
Select Little Endian or Big Endian.

Data swap width
Select 8_bits or 16_bits. When you set Data byte order to Big
Endian, the only available option for Data swap width is 8_bits.

Enable Loopback
Select this parameter to enable the loopback function for self-test
and diagnostic purposes only. When this function is enabled, a
C28x DSP Tx pin is internally connected to its Rx pin and can
transmit data from its output port to its input port to check the
integrity of the transmission.

Number of stop bits
Select whether to use 1 or 2 stop bits.

Parity mode
Type of parity to use. Available selections are None, Odd parity, or
Even parity. None disables parity. Odd sets the parity bit to one if
you have an odd number of ones in your bytes, such as 00110010.
Even sets the parity bit to one if you have an even number of ones
in your bytes, such as 00110011.

Suspension mode
Type of suspension to use when debugging your program with
Code Composer Studio. When your program encounters a
breakpoint, the suspension mode determines whether to perform
the program instruction. Available options are Hard_abort,
Soft_abort, and Free_run. Hard_abort stops the program
immediately. Soft_abort stops when the current receive/transmit

7-68

Target Preferences/Custom Board

sequence is complete. Free_run continues running regardless
of the breakpoint.

Pin assignment (Rx)
Assigns the SCI receive pin to use with the SCI module.

Pin assignment (Tx)
Assigns the SCI transmit pin to use with the SCI module.

SPI_A, SPI_B, SPI_C, SPI_D

The serial peripheral interface parameters you can set for the A module.
These parameters are:

7-69

Target Preferences/Custom Board

Baud rate factor
To set the Baud rate factor, search for “Baud Rate
Determination” and “SPI Baud Rate Register (SPIBRR) Bit
Descriptions” in TMS320x28xx, 28xxx DSP Serial Peripheral
Interface (SPI) Reference Guide, Literature Number: SPRU059,
available on the Texas Instruments Web Site.

Clock phase
Select No_delay or Delay_half_cycle.

Clock polarity
Select Rising_edge or Falling_edge.

Suspension mode
Type of suspension to use when debugging your program with
Code Composer Studio. When your program encounters a
breakpoint, the selected suspension mode determines whether
to perform the program instruction. Available options are
Hard_abort, Soft_abort, and Free_run. Hard_abort stops the
program immediately. Soft_abort stops when the current receive
or transmit sequence is complete. Free_run continues running
regardless of the breakpoint.

Data bits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data that
can be transmitted using SPI is 28-1. If you send data greater than
this value, the buffer overflows.

Enable Loopback
Select this option to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, the Tx
pin on a C28x DSP is internally connected to its Rx pin and can
transmit data from its output port to its input port to check the
integrity of the transmission.

Enable 3–wire mode
Enable SPI communication over 3 pins instead of the normal
4 pins.

7-70

Target Preferences/Custom Board

Enable FIFO
Set true or false.

FIFO interrupt level (Rx)
Set level for receive FIFO interrupt. Select 0 through 16.

FIFO interrupt level (Tx)
Set level for transmit FIFO interrupt. Select 0 through 16.

FIFO transmit delay
Enter FIFO transmit delay (in processor clock cycles) to pause
between data transmissions. Enter an integer.

Mode
Set to Master or Slave.

CLK pin assignment
Assigns the SPI something (CLK) to a GPIO pin. Choices are
None (default), GPI014, or GPI026.

SOMI pin assignment
Assigns the SPI something (SOMI) to a GPIO pin. Choices are
None (default), GPI013, or GPI025.

STE pin assignment
Assigns the SPI something (STE) to a GPIO pin. Choices are None
(default), GPI015, or GPI027.

SIMO pin assignment
Assigns the SPI something (SIMO) to a GPIO pin. Choices are
None (default), GPI012, or GPI024.

7-71

Target Preferences/Custom Board

eQEP

Assigns eQEP pins to GPIO pins.

EQEP1A pin assignment
Select an option from the list—GPIO20 or GPIO50.

EQEP1B pin assignment
Select an option from the list—GPIO21 or GPIO51.

EQEP1S pin assignment
Select an option from the list—GPIO22 or GPIO52.

EQEP1I pin assignment
Select an option from the list—GPIO23 or GPIO53.

7-72

Target Preferences/Custom Board

Watchdog
When enabled, if the software fails to reset the watchdog counter within
a specified interval, the watchdog resets the processor or generates
an interrupt. This feature enables the processor to recover from some
fault conditions.

For more information, locate the Data Manual or System Control and
Interrupts Reference Guide for your processor on the Texas Instruments
Web site.

Enable watchdog
Enable the watchdog timer module.

This parameter corresponds to bit 6 (WDDIS) of the Watchdog
Control Register (WDCR) and bit 0 (WDOVERRIDE) of the
System Control and Status Register (SCSR).

Counter clock
Set the watchdog timer period relative to OSCCLK/512.

This parameter corresponds to bits 2–0 (WDPS) of the Watchdog
Control Register (WDCR).

Timer period in seconds
This field displays the timer period in seconds. This value
automatically updates when you change the Counter clock
parameter.

Time out event
Configure the watchdog to reset the processor or generate an
interrupt when the software fails to reset the watchdog counter:

• Select Chip reset to generate a signal that resets the processor
(WDRST signal) and disable the watchdog interrupt signal
(WDINT signal).

• Select Raise WD Interrupt to generate a watchdog interrupt
signal (WDINT signal) and disable the reset processor signal
(WDRST signal). This signal can be used to wake the device
from an IDLE or STANDBY low-power mode.

7-73

Target Preferences/Custom Board

This parameter corresponds to bit 1 (WDENINT) of the System
Control and Status Register (SCSR).

GPIO

Each pin selected for input offers three signal qualification types:

• Sync to SYSCLKOUT— This setting is the default for all pins at reset.
Using this qualification type, the input signal is synchronized to the
system clock SYSCLKOUT. The following figure shows the input
signal measured on each tick of the system clock, and the resulting
output from the qualifier.

7-74

Target Preferences/Custom Board

• Qualification using 3 samples — This setting requires three
consecutive cycles of the same value for the output value to change.
The following figure shows that, in the third cycle, the GPIO value
changes to 0, but the qualifier output is still 1 because it waits for
three consecutive cycles of the same GPIO value. The next three
cycles all have a value of 0, and the output from the qualifier changes
to 0 immediately after the third consecutive value is received.

• Qualification using 6 samples — This setting requires six
consecutive cycles of the same GPIO input value for the output from
the qualifier to change. In the following figure, the glitch A has no
effect on the output signal. When the glitch occurs, the counting
begins, but the next measurement is low again, so the count is
ignored. The output signal does not change until six consecutive
samples of the high signal are measured.

7-75

Target Preferences/Custom Board

Qualification sampling period prescaler

Visible only when an appropriate setting for Qualification type
for GPIO [pin#] is selected. The qualification sampling period
prescaler, with possible values of 0 to 255, calculates the frequency
of the qualification samples or the number of system clock ticks
per sample. The formula for calculating the qualification sampling
frequency is SYSCLKOUT/(2 * Prescaler), except for zero. When
Qualification sampling period prescaler=0, a sample is taken
every SYSCLKOUT clock tick. For example, a prescale setting of 0
means that a sample is taken on each SYSCLKOUT tick.

The following figure shows the SYSCLKOUT ticks, a sample taken
every clock tick, and the Qualification type set to Qualification
using 3 samples. In this case, the Qualification sampling
period prescaler=0:

In the next figure Qualification sampling period prescaler=1. A
sample is taken every two clock ticks, and the Qualification type is

7-76

Target Preferences/Custom Board

set to Qualification using 3 samples. The output signal changes
much later than if Qualification sampling period prescaler=0.

In the following figure, Qualification sampling period
prescaler=2. Thus , a sample is taken every four clock ticks, and the
Qualification type is set to Qualification using 3 samples.

7-77

Target Preferences/Custom Board

Flash_loader

You can use Flash_loader to:

• Automatically program generated code to flash memory on the target
when you build the code.

• Manually erase, program, or verify specific flash memory sectors.

To use this feature, download and install the appropriate TI Flash API
plugin from the TI Web site.

7-78

Target Preferences/Custom Board

For more information, consult the “Programming Flash Memory”topic
in the Target Support Package User’s Guide or the *_API_Readme.pdf
file included in the TI Flash API downloadable zip file.

Enable Flash Programmer
Enable the flash programmer by selecting a task for it to perform
when you click Execute or build the software. To program
the flash memory when you build the software, select Erase,
Program, Verify.

Detect Flash sectors to erase from COFF file
When enabled, the flash programmer erases all of the flash
sectors defined by the COFF file.

Erase Sector Selection
When Detect Flash sectors to erase from COFF file is
disabled, the selected flash sectors are erased.

Specify API location
Specify the directory path of the TI flash API executable you
downloaded and installed on your computer. Use Browse to
locate the file or enter the path in the text box.

Execute
Click this button to initiate the task selected in Enable Flash
Programmer.

7-79

Target Preferences/Custom Board

DMA_ch[#]

The Direct Memory Access module transfers data directly between
peripherals and memory using a dedicated bus, increasing overall
system performance.

7-80

Target Preferences/Custom Board

You can individually enable and configure each DMA channel.

The DMA module services are event driven. Using the Interrupt
source and External pin (GPIO) parameters, you can configure a
wide range of peripheral interrupt event triggers.

To use DMA with the C280x/C28x3x ADC block, open the ADC block,
enable Use DMA (with C28x3x), and select a DMA channel number.
To avoid error messages, open the Target Preferences block >
Peripherals and disable the same DMA channel number.

For more information, consult the TMS320x2833x, 2823x Direct
Memory Access (DMA) Module Reference Guide, Literature Number:
SPRUFB8A, and the Increasing Data Throughput using the
TMS320F2833x DSC DMA training presentation (requires login), both
available from the TI Web site.

Enable DMA channel
Enable this parameter to edit the configuration of a specific DMA
channel.

If your model includes an C280x/C28x3x ADC block with the Use
DMA (with C28x3x) parameter enabled, disable the same DMA
channel here in the Target preferences block.

This parameter has no corresponding bit or register.

Data size
Select the size of the data bit transfer: 16 bit or 32 bit.

The DMA read/write data buses are 32 bits wide. 32-bit transfers
have twice the data throughput of a 16-bit transfer.

When providing DMA service to McBSP, set Data size to 16 bit.

The following parameters are based on a 16-bit word size. If
you set Data size to 32 bit, double the value of the following
parameters:

7-81

Target Preferences/Custom Board

• Size: Burst

• Source: Burst step

• Source: Transfer step

• Source: Wrap step

• Destination: Burst step

• Destination: Transfer step

• Destination: Wrap step

Data size corresponds to bit 14 (DATASIZE) in the Mode Register
(MODE).

Note When you select Use DMA (with C28x3x) in the
C280x/C28x3x ADC block, this parameter is 16 bit.

Interrupt source
Select the peripheral interrupt that triggers a DMA burst for the
specified channel.

Selecting SEQ1INT or SEQ2INT generates a message: “Use
ADC block to implement the DMA function.” To do so, open the
C280x/C28x3x ADC block, select the Use DMA (with C28x3x)
parameter, select a DMA channel, and disable the same DMA
channel in the Target Preferences block. Currently, when you
use the ADC block to implement DMA, the corresponding DMA
channel settings are not configurable in the Target Preferences
block.

Select XINT1, XINT2, or XINT13 to configure GPIO pin 0 to
31 as an external interrupt source. Select XINT3 to XINT7 to
configure GPIO pin 32 to 63 as an external interrupt source. For
more information about configuring XINT, consult the following
references:

7-82

Target Preferences/Custom Board

• TMS320x2833x, 2823x External Interface (XINTF) User’s
Guide, Literature Number: SPRU949, available on the TI Web
site.

• TMS320x2833x System Control and Interrupts, Literature
Number: SPRUFB0, available on the TI Web site.

• The C280x/C2802x/C2803x/C28x3x GPIO Digital Inputand
C280x/C2802x/C2803x/C28x3x GPIO Digital Output block
reference sections in the Target Support Package User’s Guide.

Currently, Interrupt source does not support items TINT0
through MREVTB in the drop-down menu.

The Interrupt source parameter corresponds to bit 4-0
(PERINTSEL) in the Mode Register (MODE).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block:

• If the ADC block Module is A or A and B, Interrupt source
is SEQ1INT.

• If the ADC blockModule is B, Interrupt source is SEQ2INT.

External pin(GPIO)
When you set Interrupt source is set to an external interface
(XINT[#]), specify the GPIO pin number from which the interrupt
originates.

This parameter corresponds to the GPIO XINTn, XNMI Interrupt
Select (GPIOXINTnSEL, GPIOXNMISEL) Registers. For more
information, consult the TMS320x2833x System Control and
Interrupts Reference Guide, Literature Number SPRUFB0,
available from the TI Web site.

7-83

Target Preferences/Custom Board

SRC wrap
Specify the number of bursts before returning the current source
address pointer to the Source Begin Address value. To disable
wrapping, enter a value for SRC wrap that is greater than the
Transfer value.

This parameter corresponds to bits 15-0 (SRC_WRAP_SIZE) in
the Source Wrap Size Register (SRC_WRAP_SIZE).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of this parameter is 65536.

DST wrap
Specify the number of bursts before returning the current
destination address pointer to the Destination Begin Address
value. To disable wrapping, enter a value for DST wrap that is
greater than the Transfer value.

This parameter corresponds to bits 15-0 (DST_WRAP_SIZE) in
the Destination Wrap Size Register (DST_WRAP_SIZE).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of this parameter is 65536.

SRC Begin address
Set the starting address for the current source address pointer.
The DMA module points to this address at the beginning of
a transfer and returns to it as specified by the SRC wrap
parameter.

This parameter corresponds to bits 21-0 (BEGADDR) in the Active
Source Begin Register (SRC_BEG_ADDR).

7-84

Target Preferences/Custom Board

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of the source Begin address
is:

• 0xB00 if the ADC block Module is A or A and B (Interrupt
source is SEQ1INT).

• 0xB08 If the ADC block Module is B (Interrupt source is
SEQ2INT).

DST Begin address
Set the starting address for the current destination address
pointer. The DMA module points to this address at the beginning
of a transfer and returns to it as specified by the DST wrap
parameter.

This parameter corresponds to bits 21-0 (BEGADDR) in the Active
Destination Begin Register (DST_BEG_ADDR).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of the destination Begin
address (dstAdd) is the ADC buffer address (ADCbufadr) minus
the Number of conversions (NoC) in the ADC block. In other
words, dstAdd = ADCbufadr – NoC.

• If the target is F28232 or F28332, ADCbufadr = 57340
(0xDFFC)

• Otherwise, ADCbufadr = 65532 (0xFFFC)

For example, when you enable Use DMA (with C28x3x) for
a F28232 target, the DMA module sets the destination Begin
address to 0xDFF9 (57337) because the ADCbufadr 57340
(0xDFFC) minus 3 conversions equals 57337 (0xDFF9).

7-85

Target Preferences/Custom Board

Burst
Specify the number of 16-bit words in a burst, from 1 to 32. The
DMA module must complete a burst before it can service the
next channel.

Set the Burst value appropriately for the peripheral the DMA
module is servicing. For the ADC, the value equals the number of
ADC registers used, up to 16. For multichannel buffered serial
ports (McBSP), which lack FIFOs, the value is 1. For RAM, the
value can range from 1 to 32.

This parameter corresponds to bits 4-0 (BURSTSIZE) in the Burst
Size Register (BURST_SIZE).

Note This parameter is based on a 16-bit word size. If you set
Data size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value assigned to Burst equals the
ADC block Number of conversions (NOC) multiplied by a value
for the ADC block Conversion mode (CVM). Burst = NOC * CVM

If Conversion mode is Sequential, CVM = 1. If Conversion
mode is Simultaneous, CVM = 2.

For example, Burst = 6 if NOC = 3 and CVM = 2 (6 = 3 * 2).

For more information, see C280x/C28x3x ADC.

Transfer
Specify the number of bursts in a transfer, from 1 to 65536.

7-86

Target Preferences/Custom Board

This parameter corresponds to bits 15-0 (TRANSFERSIZE) in the
Transfer Size Register (TRANSFER_SIZE).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of this parameter is 1.

SRC Burst step
Set the number of 16-bit words by which to increment or
decrement the current address pointer before the next burst.
Enter a value from –4096 (decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set
Burst step to 0. For example, because McBSP does not use FIFO,
configure DMA to maintain the correct sequence of the McBSP
data by moving each word of the data individually. Accordingly,
when you use DMA to transmit or receive McBSP data, set Burst
size to 1 word and Burst step to 0.

This parameter corresponds to bits 15-0 (SRCBURSTSTEP) in the
Source Burst Step Size Register (SRC_BURST_STEP).

Note This parameter is based on a 16-bit word size. If you set
Data size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, this parameter is 1.

DST Burst step
Set the number of 16-bit words by which to increment or
decrement the current address pointer before the next burst.
Enter a value from –4096 (decrement) to 4095 (increment).

7-87

Target Preferences/Custom Board

To disable incrementing or decrementing the address pointer, set
Burst step to 0. For example, because McBSP does not use FIFO,
configure DMA to maintain the correct sequence of the McBSP
data by moving each word of the data individually. Accordingly,
when you use DMA to transmit or receive McBSP data, set Burst
size to 1 word and Burst step to 0.

This parameter corresponds to bits 15-0 (DSTBURSTSTEP) in the
Destination Burst Step Size Register (DST_BURST_STEP).

Note This parameter is based on a 16-bit word size. If you set
Data size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, this parameter is 1.

SRC Transfer step

Set the number of 16-bit words by which to increment or
decrement the current address pointer before the next transfer.
Enter a value from –4096 (decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer,
set Transfer step to 0.

This parameter corresponds to bits 15-0 (SRCTRANSFERSTEP)
Source Transfer Step Size Register (SRC_TRANSFER_STEP).

If DMA is configured to perform memory wrapping (if SRC wrap
is enabled) the corresponding source Transfer step has no effect.

7-88

Target Preferences/Custom Board

Note This parameter is based on a 16-bit word size. If you set
Data size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of this parameter is 0.

DST Transfer step
Set the number of 16-bit words by which to increment or
decrement the current address pointer before the next transfer.
Enter a value from –4096 (decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer,
set Transfer step to 0.

This parameter corresponds to bits 15-0
(DSTTRANSFERSTEP) Destination Transfer Step Size Register
(DST_TRANSFER_STEP).

If DMA is configured to perform memory wrapping (if DST wrap
is enabled) the corresponding destination Transfer step has no
effect.

Note This parameter is based on a 16-bit word size. If you set
Data size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of this destination parameter
is 1.

7-89

Target Preferences/Custom Board

SRC Wrap step
Set the number of 16-bit words by which to increment or
decrement the SRC_BEG_ADDR address pointer when a wrap
event occurs. Enter a value from –4096 (decrement) to 4095
(increment).

This parameter corresponds to bits 15-0 (WRAPSTEP) in the
Source Wrap Step Size Registers (SRC_WRAP_STEP).

Note This parameter is based on a 16-bit word size. If you set
Data size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of this parameter is 0.

DST Wrap step
Set the number of 16-bit words by which to increment or
decrement the DST_BEG_ADDR address pointer when a wrap
event occurs. Enter a value from –4096 (decrement) to 4095
(increment).

This parameter corresponds to bits 15-0 (WRAPSTEP) in the
Destination Wrap Step Size Registers (DST_WRAP_STEP).

Note This parameter is based on a 16-bit word size. If you set
Data size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the value of this parameter is 0.

7-90

Target Preferences/Custom Board

Generate interrupt
Enable this parameter to have the DMA channel send an interrupt
to the CPU via the PIE at the beginning or end of a data transfer.

This parameter corresponds to bit 15 (CHINTE) and bit 9
(CHINTMODE) in the Mode Register (MODE).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, the DMA channel generates an
interrupt at the end of the data transfer.

Enable one shot mode

Enable this parameter to have the DMA channel complete an
entire transfer in response to an interrupt event trigger. This
option allows a single DMA channel and peripheral to dominate
resources, and may streamline processing, but it also creates the
potential for resource conflicts and delays.

Disable this parameter to have DMA complete one burst per
channel per interrupt.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, this parameter is disabled.

Sync enable
When Interrupt source is set to SEQ1INT, enable this
parameter to reset the DMA wrap counter when it receives the
ADCSYNC signal from SEQ1INT. This ensures that the wrap
counter and the ADC channels remain synchronized with each
other.

7-91

Target Preferences/Custom Board

If Interrupt source is not set to SEQ1INT, Sync enable has no
effect.

This parameter corresponds to bit 12 (SYNCE) of the Mode
Register (MODE).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, this parameter is disabled.

Enable continuous mode
Select this parameter to leave the DMA channel enabled upon
completing a transfer. The channel will wait for the next interrupt
event trigger.

Clear this parameter to disable the DMA channel upon completing
a transfer. The DMA module disables the DMA channel by
clearing the RUNSTS bit in the CONTROL register when it
completes the transfer. To use the channel again, first reset the
RUN bit in the CONTROL register.

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, this parameter is enabled.

Enable DST sync mode
When Sync enable is enabled, enabling this parameter resets
the destination wrap counter (DST_WRAP_COUNT) when
the DMA module receives the SEQ1INT interrupt/ADCSYNC
signal. Disabling this parameter resets the source wrap counter
(SCR_WRAP_COUNT) when the DMA module receives the
SEQ1INT interrupt/ADCSYNC signal.

This parameter is associated with bit 13 (SYNCSEL) in the Mode
Register (MODE).

7-92

Target Preferences/Custom Board

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, this parameter is disabled.

Set channel 1 to highest priority
This parameter is only available for DMA_ch1.

Enable this setting when DMA channel 1 is configured to handle
high-bandwidth data, such as ADC data, and the other DMA
channels are configured to handle lower-priority data.

When enabled, the DMA module services each enabled channel
sequentially until it receives a trigger from channel 1. Upon
receiving the trigger, DMA interrupts its service to the current
channel at the end of the current word, services the channel 1
burst that generated the trigger, and then continues servicing the
current channel at the beginning of the next word.

Disable this channel to give each DMA channel equal priority, or
if DMA channel 1 is the only enabled channel.

When disabled, the DMA module services each enabled channel
sequentially.

This parameter corresponds to bit 0 (CH1PRIORITY) in the
Priority Control Register 1 (PRIORITYCTRL1).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, this parameter is disabled.

Enable overflow interrupt
Enable this parameter to have the DMA channel send an interrupt
to the CPU via PIE if the DMA module receives a peripheral

7-93

Target Preferences/Custom Board

interrupt while a previous interrupt from the same peripheral is
waiting to be serviced.

This parameter is typically used for debugging during the
development phase of a project.

The Enable overflow interrupt parameter corresponds to bit
7 (OVRINTE) of the Mode Register (MODE), and involves the
Overflow Flag Bit (OVRFLG) and Peripheral Interrupt Trigger
Flag Bit (PERINTFLG).

Note When you select Use DMA (with C28x3x) the
C280x/C28x3x ADC block, this parameter is disabled.

7-94

Target Preferences/Custom Board

PLL

The default PLL register values run the CPU clock (CLKIN) at its
maximum frequency. The parameters assume that the external
oscillator frequency on the board (OSCCLK) is the one recommended
by the processor vendor.

Change the PLL settings if:

• You want to change the CPU frequency.

• The external oscillator frequency differs from the value recommended
by the manufacturer.

7-95

Target Preferences/Custom Board

Use the following equation to determine the CPU frequency (CLKIN):

CLKIN = (OSCCLK * PLLCR) / (DIVSEL or CLKINDIV)

Where:

• CLKIN is the frequency at which the CPU operates, also known as
the CPU clock.

• OSCCLK is the frequency of the oscillator.

• PLLCR is the PLL Control Register value.

• CLKINDIV is the “Clock in Divider”.

• DIVSEL is the “Divider Select”.

The availability of the DIVSEL or CLKINDIV parameters change
depending on the selected processor. If neither parameter is available,
use the following equation instead:

CLKIN = (OSCCLK * PLLCR) / 1

Enter the resulting CPU clock frequency (CLKIN) in the CPU clock
parameter of the Target Preferences block.

For more information, consult the “PLL-Based Clock Module” section in
the Texas Instruments Reference Guide for your processor.

Add Processor Dialog Box

To add a new processor to the drop down list for the Processors option,
click the Add new button on the Board pane. The software opens
the Add Processor dialog box.

7-96

Target Preferences/Custom Board

Note You can use this feature to create duplicates of existing processors
with minor changes to the compiler and linker options. Avoid using this
feature to create profiles for processors that are not already supported.

New Name
Provide a name to identify your new processor. You can use any
valid C string value in this field. The name you enter in this field
appears on the list of processors after you add the new processor.

If you do not provide an entry for each parameter, Embedded IDE
Link returns an error message without creating a processor entry.

Based On
When you add a processor, the dialog box uses the settings from
the currently selected processor as the basis for the new one. This
parameter displays the currently selected processor.

Compiler options
Identifies the processor family of the new processor to the
compiler. Successful compilation requires this switch. The string
depends on the processor family or class.

For example, to set the compiler switch for a new C5509 processor,
enter -ml. The following table shows the compiler switch string
for supported processor families.

Processor Family Compiler Switch String

C62xx None

C64xx None

C67xx None

DM64x and DM64xx None

C55xx -ml

C28xx, F28xx, R28xx, F28xxx -ml

7-97

Target Preferences/Custom Board

Linker options
You can use this parameter to specify linker command options.
The IDE uses these options to modify how it links project files
when you build a project. To get information about specific linker
options you can enter here, consult the documentation for your
IDE.

7-98

Custom or Demo Block

Purpose Custom or demo block

Description This help topic serves as a landing page if you click the help button
for a custom or demo block. These blocks are typically undocumented
because they are not part of the standard block libraries.

To provide online help for custom blocks you create, see “Providing
Your Own Help and Demos”.

7-99

Custom or Demo Block

7-100

8

Function Reference

Setup (p. 8-2) Set up Embedded IDE Link to work
with your IDE or toolchain

Constructor (p. 8-3) Create an object for handling your
IDE

File and Project Operations (p. 8-4) Perform operations on files and
projects in your IDE

Processor Operations (p. 8-5) Perform operations on the processors
associated with your IDE

Debug Operations (p. 8-6) Perform debug operations

Data Manipulation (p. 8-7) Perform operations on processor
memory and registers

Status Operations (p. 8-8) Get processor status

Grouped by IDE (p. 8-9) Lists of supported methods for each
IDE

8 Function Reference

Setup
adivdspsetup Configure Embedded IDE Link to

work with VisualDSP++ IDE

checkEnvSetup Check system requirements and
configure Embedded IDE Link to
work with CCS IDE

eclipseidesetup Configure Embedded IDE Link to
work with Eclipse IDE

ghsmulticonfig Configure Embedded IDE Link to
work with MULTI IDE

xmakefilesetup Configure Embedded IDE Link to
generate makefiles

8-2

Constructor

Constructor
adivdsp Create handle object to interact with

VisualDSP++ IDE

eclipseide Create handle object to interact with
Eclipse IDE

ghsmulti Create handle object to interact with
MULTI IDE

ticcs Create handle object to interact with
CCS IDE

8-3

8 Function Reference

File and Project Operations
activate Mark file, project, or build

configuration as active

add Add files to active project in IDE

build Build or rebuild current project

cd Set working directory in IDE

close Close project in IDE window

connect Connect IDE to processor

dir Files and directories in current IDE
window

getbuildopt Generate structure of build tools and
options

info Information about processor

list Information listings from IDE

new Create project, library, or build
configuration in IDE

open Open project in IDE

remove Remove file, project, or breakpoint

setbuildopt Set active configuration build options

symbol Program symbol table from IDE

8-4

Processor Operations

Processor Operations
halt Halt program execution by processor

load Load program file onto processor

profile Generate real-time execution or
stack profiling report

reset Stop program execution and reset
processor

restart Reload most recent program file to
processor signal processor

run Execute program loaded on processor

8-5

8 Function Reference

Debug Operations
animate Run application on processor to

breakpoint

info Information about processor

insert Insert debug point in file

remove Remove file, project, or breakpoint

run Execute program loaded on processor

8-6

Data Manipulation

Data Manipulation
address Memory address and page value of

symbol in IDE

pwd Working directory used by Eclipse

read Read data from processor memory

regread Values from processor registers

regwrite Write data values to registers on
processor

write Write data to processor memory
block

8-7

8 Function Reference

Status Operations
isrunning Determine whether processor is

executing process

8-8

Grouped by IDE

Grouped by IDE

In this section...

“Altium TASKING” on page 8-9

“Analog Devices™ VisualDSP++” on page 8-9

“Eclipse IDE” on page 8-11

“Green Hills® MULTI” on page 8-12

“Texas Instruments Code Composer Studio” on page 8-14

Altium TASKING
The “Automation Interface” topic in the Embedded IDE Link User’s Guide
describes the functions and methods for working with Altium TASKING.

Analog Devices VisualDSP++

activate Mark file, project, or build
configuration as active

add Add files to active project in IDE

address Memory address and page value of
symbol in IDE

adivdsp Create handle object to interact with
VisualDSP++ IDE

adivdspsetup Configure Embedded IDE Link to
work with VisualDSP++ IDE

build Build or rebuild current project

cd Set working directory in IDE

close Close project in IDE window

dir Files and directories in current IDE
window

display Properties of IDE handle

8-9

8 Function Reference

getbuildopt Generate structure of build tools and
options

halt Halt program execution by processor

info Information about processor

insert Insert debug point in file

isrunning Determine whether processor is
executing process

isvisible Determine whether IDE is visible on
desktop

listsessions List existing sessions

load Load program file onto processor

new Create project, library, or build
configuration in IDE

open Open project in IDE

profile Generate real-time execution or
stack profiling report

read Read data from processor memory

remove Remove file, project, or breakpoint

reset Stop program execution and reset
processor

run Execute program loaded on processor

save Save file

setbuildopt Set active configuration build options

symbol Program symbol table from IDE

visible Set whether IDE window is visible
while IDE runs

write Write data to processor memory
block

xmakefilesetup Configure Embedded IDE Link to
generate makefiles

8-10

Grouped by IDE

Eclipse IDE

activate Mark file, project, or build
configuration as active

add Add files to active project in IDE

address Memory address and page value of
symbol in IDE

build Build or rebuild current project

close Close project in IDE window

dir Files and directories in current IDE
window

display Properties of IDE handle

eclipseide Create handle object to interact with
Eclipse IDE

eclipseidesetup Configure Embedded IDE Link to
work with Eclipse IDE

halt Halt program execution by processor

insert Insert debug point in file

isrunning Determine whether processor is
executing process

load Load program file onto processor

new Create project, library, or build
configuration in IDE

open Open project in IDE

profile Generate real-time execution or
stack profiling report

pwd Working directory used by Eclipse

read Read data from processor memory

reload Reload most recent program file to
processor signal processor

remove Remove file, project, or breakpoint

8-11

8 Function Reference

restart Reload most recent program file to
processor signal processor

run Execute program loaded on processor

write Write data to processor memory
block

xmakefilesetup Configure Embedded IDE Link to
generate makefiles

Green Hills MULTI

activate Mark file, project, or build
configuration as active

add Add files to active project in IDE

address Memory address and page value of
symbol in IDE

build Build or rebuild current project

cd Set working directory in IDE

close Close project in IDE window

connect Connect IDE to processor

dir Files and directories in current IDE
window

display Properties of IDE handle

getbuildopt Generate structure of build tools and
options

ghsmulti Create handle object to interact with
MULTI IDE

ghsmulticonfig Configure Embedded IDE Link to
work with MULTI IDE

halt Halt program execution by processor

info Information about processor

8-12

Grouped by IDE

insert Insert debug point in file

isrunning Determine whether processor is
executing process

list Information listings from IDE

load Load program file onto processor

new Create project, library, or build
configuration in IDE

open Open project in IDE

profile Generate real-time execution or
stack profiling report

read Read data from processor memory

regread Values from processor registers

regwrite Write data values to registers on
processor

reload Reload most recent program file to
processor signal processor

remove Remove file, project, or breakpoint

reset Stop program execution and reset
processor

restart Reload most recent program file to
processor signal processor

run Execute program loaded on processor

setbuildopt Set active configuration build options

symbol Program symbol table from IDE

write Write data to processor memory
block

xmakefilesetup Configure Embedded IDE Link to
generate makefiles

8-13

8 Function Reference

Texas Instruments Code Composer Studio

activate Mark file, project, or build
configuration as active

add Add files to active project in IDE

address Memory address and page value of
symbol in IDE

animate Run application on processor to
breakpoint

build Build or rebuild current project

ccsboardinfo Information about boards and
simulators known to IDE

cd Set working directory in IDE

checkEnvSetup Check system requirements and
configure Embedded IDE Link to
work with CCS IDE

close Close project in IDE window

configure Define size and number of RTDX™
channel buffers

datatypemanager Open Data Type Manager

dir Files and directories in current IDE
window

disable Disable RTDX interface, specified
channel, or all RTDX channels

display Properties of IDE handle

enable Enable RTDX interface, specified
channel, or all RTDX channels

flush Flush data or messages from
specified RTDX channels

getbuildopt Generate structure of build tools and
options

halt Halt program execution by processor

8-14

Grouped by IDE

info Information about processor

insert Insert debug point in file

isenabled Determine whether RTDX link is
enabled for communications

isreadable Determine whether MATLAB
software can read specified memory
block

isrtdxcapable Determine whether processor
supports RTDX

isrunning Determine whether processor is
executing process

isvisible Determine whether IDE is visible on
desktop

iswritable Determine whether MATLAB
software can write to specified
memory block

list Information listings from IDE

load Load program file onto processor

msgcount Number of messages in read-enabled
channel queue

new Create project, library, or build
configuration in IDE

open Open project in IDE

profile Generate real-time execution or
stack profiling report

read Read data from processor memory

readmat Matrix of data from RTDX channel

readmsg Read messages from specified RTDX
channel

regread Values from processor registers

8-15

8 Function Reference

regwrite Write data values to registers on
processor

reload Reload most recent program file to
processor signal processor

remove Remove file, project, or breakpoint

reset Stop program execution and reset
processor

restart Reload most recent program file to
processor signal processor

run Execute program loaded on processor

save Save file

setbuildopt Set active configuration build options

symbol Program symbol table from IDE

ticcs Create handle object to interact with
CCS IDE

visible Set whether IDE window is visible
while IDE runs

write Write data to processor memory
block

writemsg Write messages to specified RTDX
channel

xmakefilesetup Configure Embedded IDE Link to
generate makefiles

8-16

9

Functions — Alphabetical
List

activate

Purpose Mark file, project, or build configuration as active

Syntax IDE_Obj.activate('objectname','type')

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description Use the IDE_Obj.activate('objectname','type') method to make
a project file, text file, or build configuration active in the MATLAB
session.

When you make a project, file, or build configuration active, methods
you invoke on the IDE handle object apply to that project, file, or build
configuration.

Inputs IDE_Obj

For IDE_Obj, enter the name of the IDE handle object you
created using a constructor function. For more information, see
“Constructor” on page 8-3.

objectname

For objectname, enter the name of the project file, text file, or
build configuration to make active.

For project and text files, enter the full file name including the
extension.

For build configurations, enter 'Debug', 'Release', or 'Custom'.
Before using the activate method on a build configuration,
activate the project that contains the build configuration. For
more information about configurations, see “Configuration” on
page 10-15.

9-2

activate

type

For type, enter the type of object to make active. If you omit the
type argument, type defaults to 'project'. Enter one of the
following strings for type:

• 'project'— Makes a specified project active.

• 'text' — Gives focus to a specified text file

• 'buildcfg'— Make a specified build configuration active

IDE support for type

CCS Eclipse MULTI VisualDSP++

'project' Yes Yes Yes Yes

'text' Yes Yes

'buildcfg' Yes Yes Yes

Examples After using a constructor to create the IDE handle object, h, open
several projects, make the first one active, and build the project:

h.open('c:\temp\myproj1')
h.open('c:\temp\myproj2')
h.open('c:\temp\myproj3')
h.activate('c:\temp\myproj1', 'project')
h.build

After making a project active, make the ’debug’ configuration active:

h.activate('debug','buildcfg')

After opening a file in the IDE window, make the file active:

h.activate('text.cpp','text')

See Also build, new, remove

9-3

add

Purpose Add files to active project in IDE

Syntax IDE_Obj.add(filename,filetype)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description Use IDE_Obj.add(filename,filetype) to add an existing file to the
active project in the IDE. Using the add function is equivalent to
selecting Project > Add Files to Project in the IDE.

Before using add:

• Use a constructor to create an IDE handle object, such as IDE_Obj.
For more information, see “Constructor” on page 8-3.

• Create or open a project using the new or open methods.

• Make the project active in the IDE using the activate method.

You can add any file type your IDE supports to your project. Consult the
documentation for your IDE for detailed information about supported
file types.

9-4

add

All Supported File Types and Extensions

File Type
Extensions
Supported

CCS IDE Project
Folder

C/C++ source files .c, .cpp, .cc, .cxx,
.sa, .h,.hpp,.hxx

Source

Assembly source files .a*, .s* (excluding
.sa), .dsp

Source

Object and library
files

.o*, .lib, .doj, .dlb Libraries

Linker command file .cmd, .ldf Project Name

VDK support file .vdk

DSP/BIOS file (only
with CCS IDE and
Target Support
Package software)

.tcf DSP/BIOS Config

Note CCS IDE drops files in the appropriate project folder, indicated in
the right-most column of the preceding table.

Inputs add places the file specified by filename in the active project in the IDE.

IDE_Obj

IDE_Obj is a handle for an instance of the IDE. Before using a
method, use a constructor function to create IDE_Obj. For more
information, see “Constructor” on page 8-3.

filename

filename is the name of the file to add to the active IDE project.

If you supply a filename with no path or with a relative path,
Embedded IDE Link searches the IDE working folder first. It then

9-5

add

searches the directories on your MATLAB path. Add supported
file types shown in the preceding table.

filetype

filetype is an optional argument that specifies the file type. For
example, 'lib', 'src', 'header'.

Outputs The add method assigns the type, size, and uclass of the file to
IDE_Obj.type.

Examples Start by creating an IDE handle object, such as IDE_Obj using the
constructor for your IDE. Then enter the following commands:

IDE_Obj.new('myproject','project'); % Create a new project.

IDE_Obj.add('sourcefile.c'); % Add a C source file.

See Also activate, cd, new, open, remove

9-6

address

Purpose Memory address and page value of symbol in IDE

Syntax a = IDE_Obj.address(symbol,scope)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description The a = IDE_Obj.address(symbol,scope) method returns the
memory address of the first matching symbol in the symbol table of
the most recently loaded program.

Because the address method returns the address and page values as a
structure, your programs can use the values directly. For example, the
IDE_Obj.read and IDE_Obj.write can use a as an input.

If the address method does not find the symbol in the symbol table, it
generates a warning and returns a null value.

Inputs a

Use a as a variable to capture the return values from the address
method.

IDE_Obj

IDE_Obj is a handle for an instance of the IDE. Before using a
method, use a constructor function to create IDE_Obj. For more
information, see “Constructor” on page 8-3.

symbol

symbol is the name of the symbol for which you are getting the
memory address and page values.

9-7

address

Symbol names are case sensitive. Use the proper case when you
enter symbol

For address to return an address, the symbol must be a valid
entry in the symbol table. If the address method does not find the
symbol, it generates a warning and leaves a empty.

scope

Optionally, you set the scope of the address method. Enter
'local' or 'global'. Use 'local' when the current scope of
the program is the desired function scope. If you omit the scope
argument, the address method uses 'local' by default.

Outputs If the address method does not find the symbol, it generates a warning
and does not return a value for a.

The address method only returns address information for the first
matching symbol in the symbol table.

For Code Composer Studio

The address method returns the symbol name, address offset, and
page for the symbol as a 1-by-2 vector. The first cell, a{1}, contains
the symbol name. The second cell contains the address, a{2}(1), and
the memory page a{2}(2).

With TI C6000 processors, the memory page value is 0.

For Eclipse

With Eclipse IDE, the addressmethod only returns the symbol address.
It does not return a value for page.

The return value, a, is the numeric value of the symbol address.

For MULTI

With MULTI, address requires a linker command file (lcf) in your
project.

The return value a is a numeric array with the symbol’s address offset,
a{1}, and page, a{2}.

9-8

address

For VisualDSP++

With VisualDSP++, address requires a linker command file (lcf) in
your project.

The return value a is a numeric array with the symbol’s start address,
a{1}, and memory type, a{2}.

Examples After you load a program to your processor, address lets you read
and write to specific entries in the symbol table for the program. For
example, the following function reads the value of symbol ’ddat’ from
the symbol table in the IDE.

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'),'double',4)

ddat is an entry in the current symbol table. address searches for the
string ddat and returns a value when it finds a match. read returns
ddat to MATLAB software as a double-precision value as specified by
the string ’double’.

To change values in the symbol table, use address with write:

IDE_Obj.write(IDE_Obj.address('ddat'),double([pi
12.3 exp(-1)...
sin(pi/4)]))

After executing this write operation, ddat contains double-precision
values for π, 12.3, e-1, and sin(π/4). Use read to verify the contents
of ddat:

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'),'double',4)

MATLAB software returns

ddatv =

3.1416 12.3 0.3679 0.7071

See Also load, read, symbol, write

9-9

adivdsp

Purpose Create handle object to interact with VisualDSP++ IDE

Syntax IDE_Obj = adivdsp
IDE_Obj = adivdsp('propname1',propvalue1,'propname2',propvalue2,
,'timeout',value)
IDE_Obj = adivdsp('my_session')

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

Description If the IDE is not running, IDE_Obj = adivdsp opens the VisualDSP++
software for the most recent active session. After that, it creates an
object, IDE_Obj, that references the newly opened session. If the IDE
is running, adivdsp returns object IDE_Obj that connects to the active
session in the IDE.

adivdsp creates an interface between MATLAB software and Analog
Devices VisualDSP++ software. The first time you use adivdsp, supply
a session name as an input argument (refer to the next syntax).

Note The output object name (left side argument) you provide for
adivdsp cannot begin with an underscore, such as _IDE_Obj.

IDE_Obj =
adivdsp('sessionname','name','procnum','number',...)
returns an object handle IDE_Obj that you use to interact with a
processor in the IDE from MATLAB.

Use the debug methods (refer to “Debug Operations” on page 8-6 for the
methods available) with this object to access memory and control the
execution of the processor.

The adivdsp function interprets input arguments as object property
definitions. Each property definition consists of a property name
followed by the desired property value (often called a PV, or property

9-10

adivdsp

name/property value, pair). Although you can define any adivdsp
object property when you create the object, there are several important
properties that you must provide during object construction. These
properties must be properly delineated when you create the object. The
required input arguments are

• sessionname— Specifies the session to connect to. This session must
exist in the session list. adivdsp does not create new sessions. The
resulting object refers to a processor in sessionname. To see the list
of sessions, use listsessions at the MATLAB command prompt.

• procnum— Specifies the processor to connect to in sessionname. The
default value for procnum is 0 for the first processor on the board.
If you omit the procnum argument, adivdsp connects to the first
processor. procnum can also be an array of processor indexes on a
multiprocessor board. Using an array results in the adivdsp object
IDE_Obj being an array of handles that correspond to the specified
processors.

After you build the adivdsp object IDE_Obj, you can review the object
property values with get, but you cannot modify the sessionname and
procnum property values.

To connect to the active session in IDE, omit the sessionname property
in the syntax. If you do not pass sessionname as an input argument,
the object defaults to the active session in the IDE.

Use listsessions to determine the number for the desired DSP
processor. If your IDE session is single processor or to connect to
processor zero, you can omit the procnum property definition. If you
omit the procnum argument, procnum defaults to 0 (zero-based).

IDE_Obj =
adivdsp('propname1',propvalue1,'propname2',propvalue2,
,'timeout',value) sets the global time-out value to value in IDE_Obj.
MATLAB waits for the specified time-out value to get a response from
the IDE application. If the IDE does not respond within the allotted
time-out period, MATLAB exits from the evaluation of this function.

9-11

adivdsp

If the session exists in the session list and the IDE is not already
running, IDE_Obj = adivdsp('my_session') connects to my_session.
In this case, MATLAB starts VisualDSP++ IDE for the session named
my_session.

The following list shows some other possible cases and results of using
adivdsp to construct an object that refers to my_session.

• If my_session does not exist in the session list and the IDE is not
already running, MATLAB returns an error stating that my_session
does not exist in the session list.

• When my_session is the current active session and the IDE is
already running, MATLAB connects to the IDE for this session.

• If my_session is not the current active session, but exists in the
session list, and the IDE is already running, MATLAB displays a
dialog box asking if you want to switch to my_session. If you choose
to switch to my_session, all existing handles you have to other
sessions in the IDE become invalid. To connect to the other sessions
you use adivdsp to recreate the objects for those sessions.

• If my_session does not exist in the session list and the IDE is already
running, MATLAB returns an error, explaining that the session
my_session does not exist in the session list.

Examples These examples demonstrate some of the operation of adivdsp.

IDE_Obj = adivdsp('sessionname','my_session','procnum',0);

returns a handle to the first DSP processor for session my_session.

IDE_Obj =
adivdsp('sessionname','my_multiproc_session','procnum',[0
1]);

returns a 1-by-2 array of handles to the first and second DSP processor
for the multiprocessor session my_multiproc_session. IDE_Obj(1) is
the handle for first processor (0) IDE_Obj(2) is the handle for second
processor (1).

9-12

adivdsp

IDE_Obj = adivdsp without input arguments constructs the object
IDE_Obj with the default property values, returning a handle to the
first DSP processor for the active session in the IDE.

IDE_Obj = adivdsp('sessionname','my_session'); returns a handle
to the first DSP processor for the session my_session.

See Also listsessions

9-13

adivdspsetup

Purpose Configure Embedded IDE Link to work with VisualDSP++ IDE

Syntax

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

Description Enter adivdspsetup at the MATLAB command line when you are
setting up Embedded IDE Link to work with VisualDSP++ for the first
time. This action displays a dialog box that specifies where Embedded
IDE Link installs a plug-in for VisualDSP++. The default value for
Folder is the VisualDSP++ system folder. You can specify any folder
for which you have write access. When you click OK, the software adds
the plug-in to the folder and registers the plug-in with the VisualDSP++
IDE. Also see “Installation and Configuration”.

Examples 1 At the MATLAB command line, enter: adivdspsetup. This action
opens the following dialog box:

2 Click Browse, locate the system folder for VisualDSP++, and click
OK. This action registers the Embedded IDE Link plugin to the
VisualDSP++ IDE.

See Also adivdsp

9-14

animate

Purpose Run application on processor to breakpoint

Syntax IDE_Obj.animate

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description IDE_Obj.animate starts the processor application, which runs until it
encounters a breakpoint in the code. At the breakpoint, application
execution halts and CCS Debugger returns data to the IDE to update
all windows not connected to probe points. After updating the display,
the application resumes execution and runs until it encounters another
breakpoint. The run-break-resume process continues until you stop the
application from MATLAB software with the halt function or from
the IDE.

While running scripts or files in MATLAB software, you can use
animate to update the IDE with information as your script or program
runs.

Using animate with Multiprocessor Boards

When you use animate with a ticcs object IDE_Obj that comprises
more than one processor, such as an OMAP processor, the method
applies to each processor in your IDE_Obj object. This action causes
each processor to run a loaded program just as it does for the single
processor case.

See Also halt, restart, run

9-15

build

Purpose Build or rebuild current project

Syntax [result,numwarns]=IDE_Obj.build(timeout)
IDE_Obj.build('all')

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description [result,numwarns]=IDE_Obj.build(timeout) incrementally builds
the active project. Incremental builds recompile only source files in
your project that you changed or added after the most recent build.
build uses the file time stamp to determine whether to recompile a file.
After recompiling the source files, build links the object files to make
a new program file.

The value of result is 1 when the build process completes successfully.
The value of numwarns is the number of compilation warnings generated
from the build process.

The timeout argument defines the number of seconds MATLAB waits
for the IDE to complete the build process. If the IDE exceeds the
timeout period, this method returns a timeout error immediately. The
timeout error does not terminate the build process in the IDE. The IDE
continues the build process. The timeout error indicates that the build
process did not complete before the specified timeout period expired.
If you omit the timeout argument, the build method uses a default
value of 1000 seconds.

IDE_Obj.build('all') rebuilds all the files in the active project.

See Also isrunning

open

9-16

ccsboardinfo

Purpose Information about boards and simulators known to IDE

Syntax ccsboardinfo
boards = ccsboardinfo

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description ccsboardinfo returns configuration information about each board
and processor installed and recognized by CCS. When you issue the
function, ccsboardinfo returns the following information about each
board or simulator.

Installed Board
Configuration Data

Configuration
Item Name Description

Board number boardnum The number CCS assigns to the board or
simulator. Board numbering starts at 0 for
the first board. You also use boardnum when
you create a link to the IDE.

Board name boardname The name assigned to the board or simulator.
Usually, the name is the board model name,
such as TMS320C67xx evaluation module.
If you are using a simulator, the name tells
you which processor the simulator matches,
such as C67xx simulator. If you renamed
the board during setup, your assigned name
appears here.

9-17

ccsboardinfo

Installed Board
Configuration Data

Configuration
Item Name Description

Processor number procnum The number assigned by CCS to the
processor on the board or simulator. When
the board contains more than one processor,
CCS assigns a number to each processor,
numbering from 0 for the first processor
on the first board. For example, when you
have two boards, the first processor on the
first board is procnum=0, and the first and
second processors on the second board are
procnum=1 and procnum=2. You also use this
property when you create a link to the IDE.

Processor name procname Provides the name of the processor. Usually
the name is CPU, unless you assign a
different name.

Processor type proctype Gives the processor model, such as
TMS320C6x1x for the C6xxx series
processors.

Each row in the table that you see displayed represents one digital
signal processor, either on a board or simulator. As a consequence,
you use the information in the table in the function ticcs to identify a
selected board in your PC.

boards = ccsboardinfo returns the configuration information about
your installed boards in a slightly different manner. Rather return the
table of the information, the method returns a list of board names and
numbers. In that list, each board has an structure named proc that
contains processor information. For example

boards = ccsboardinfo

returns

boards =

9-18

ccsboardinfo

name: 'C6xxx Simulator (Texas Instruments)'

number: 0

proc: [1x1 struct]

where the structure proc contains the processor information for the
C6xxx simulator board:

boards.proc

ans =

name: 'CPU'

number: 0

type: 'TMS320C6200'

Reviewing the output from both function syntaxes shows that the
configuration information is the same.

To connect with a specific board when you create an IDE handle object,
combine this syntax with the dot notation for accessing elements in a
structure. Use the boardnum and procnum properties in the boards
structure. For example, when you enter

boards = ccsboardinfo;

boards(1).name returns the name of your second installed board and
boards(1).proc(2).name returns the name of the second processor on
the second board. To create a link to the second processor on the second
board, use

IDE_Obj = ticcs('boardnum',boards(1).number,'procnum',...
boards(1).proc(2).name);

Examples On a PC with both a simulator and a DSP Starter Kit (DSK) board
installed,

ccsboardinfo

9-19

ccsboardinfo

returns something like the following table. Your display may differ
slightly based on what you called your boards when you configured
them in CCS Setup Utility:

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ---------------

1 C6xxx Simulator (Texas Instrum ..0 CPU TMS320C6200

0 DSK (Texas Instruments) 0 CPU_3 TMS320C6x1x

When you have one or more boards that have multiple CPUs,
ccsboardinfo returns the following table, or one like it:

Board Board Proc Processor Processor

Num Name Num Name Type

-- ---------------------------------- --- -------------------

2 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6200

1 C6xxx EVM (Texas Instrum ... 1 CPU_Primary TMS320C6200

1 C6xxx EVM (Texas Instrum ... 0 CPU_Secondary TMS320C6200

0 C64xx Simulator (Texas Instru...0 CPU TMS320C64xx

In this example, board number 1 returns two defined CPUs:
CPU_Primary and CPU_Secondary. The C6xxx does not in fact have two
CPUs; a second CPU is defined for this example.

To demonstrate the syntax boards = ccsboardinfo, this example
assumes a PC with two boards installed, one of which has three CPUs.

Enter

ccsboardinfo

at the MATLAB desktop prompt. You get

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ------------

1 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6211

9-20

ccsboardinfo

0 C6211 DSK (Texas Instruments) 2 CPU_3 TMS320C6x1x

0 C6211 DSK (Texas Instruments) 1 CPU_4_1 TMS320C6x1x

0 C6211 DSK (Texas Instruments) 0 CPU_4_2 TMS320C6x1x

Now enter

boards = ccsboardinfo

MATLAB software returns

boards=
2x1 struct array with fields

name
number
proc

showing that you have two boards in your PC.

Use the dot notation to determine the names of the boards:

boards.name

returns

ans=
C6xxx Simulator (Texas Instruments)

ans=
C6211 DSK (Texas Instruments)

To identify the processors on each board, again use the dot notation to
access the processor information. You have two boards (numbered 0 and
1). Board 0 has three CPUs defined for it. To determine the type of the
second processor on board 0 (the board whose boardnum = 0), enter

boards(2).proc(1)

which returns

9-21

ccsboardinfo

ans=
name: 'CPU_3'
number: 1
type: 'TMS320C6x1x'

Recall that

boards(2).proc

gives you this information about the board

ans=
3x1 struct array with fields:

name
number
type

indicating that this board has three processors (the 3x1 array).

The dot notation is useful for accessing the contents of a structure
when you create a link to the IDE. When you use ticcs to create your
CCS link, you can use the dot notation to tell the IDE which processor
you are using.

IDE_Obj = ticcs('boardnum',boards(1).proc(1))

See Also info, ticcs

9-22

cd

Purpose Set working directory in IDE

Syntax wd=IDE_Obj.cd
IDE_Obj.cd(directory)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description wd=IDE_Obj.cd assigns the current working directory of the IDE to the
variable, wd. which you reference via the IDE handle object, IDE_Obj.

IDE_Obj.cd(directory) sets the IDE working directory to
'directory'. 'directory' can be a path string relative to your current
working directory, or an absolute path. The intended directory must
exist. cd does not create a directory. Setting the IDE directory does not
affect your MATLAB working directory.

cd alters the default directory for open and load. Loading a new
workspace file also changes the working directory for the IDE.

See Also dir

load

open

9-23

checkEnvSetup

Purpose Check system requirements and configure Embedded IDE Link to work
with CCS IDE

Syntax checkEnvSetup(ide, boardproc, action)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description Before you use ticcs for the first time, use the checkEnvSetup function
to check for third-party tools and set environment variables. Run
checkEnvSetup again whenever you configure CCS IDE to work with a
new board or processor, or upgrade any of the related third-party tools.

The syntax for this function is: checkEnvSetup(ide, boardproc,
action):

• For ide, enter 'ccs'.

• For boardproc, enter the name of a supported board or processor.
You can get these names from the Processor option of the
Custom board for TI CCS target preferences block, located in
the idelinklib_ticcs block library. For example, enter: 'F2812',
'c5509', 'c6416dsk', 'F2808 eZdsp', 'dm6437evm'.

• For action, enter the specific action you want this function to
perform:

- 'list' lists the required third-party tools with their version
numbers.

- 'check' lists the required third-party tools and the ones on your
development system. If any tools are missing, install them. If the
version numbers of the tools on your system are not high enough,
update the tools.

- 'setup' creates environment variables that point to the
installation folders of the third-party tools. If your tools do not

9-24

checkEnvSetup

meet the requirements, the function advises you. If needed, the
function prompts you to enter path information for specific tools.

If you omit the action argument, the method defaults to 'setup'.

If action is 'list' or 'check', you can assign the third-party tool
information to a variable instead of displaying it on the MATLAB
command line. When action is 'setup', the statement does not return
an output argument.

Examples To see the required third-party tools and version information for your
board, use 'list' as the action argument:

checkEnvSetup('ccs', 'F2808 eZdsp', 'list')

1. CCS (Code Composer Studio)
Required version: 3.3.80.11
Required by : Embedded IDE Link 4.0
Required for : Code generation

2. CGT (Texas Instruments C2000 Code Generation Tools)
Required version: 5.0.2
Required by : Embedded IDE Link 4.0
Required for : Code generation

3. DSP/BIOS (Real Time Operating System)
Required version: 5.32.04
Required by : Embedded IDE Link 4.0
Required for : Code generation

4. Flash Tools (TMS320C2808 Flash APIs)
Required version: 3.02
Required by : Target Support Package 4.0
Required for : Flash Programming
Required environment variables (name, value):
(FLASH_2808_API_INSTALLDIR, "Flash Tools (TMS320C2808 Flash APIs

9-25

checkEnvSetup

After installing or upgrading tools, compare your versions of the tools
with the required versions. Use 'check' as the action argument:

checkEnvSetup('ccs', 'c6416', 'check')

1. Checking CCS (Code Composer Studio) version
Your Version : 3.3.80.11
Required version: 3.3.80.11
Required by : Embedded IDE Link 4.0
Required for : Code generation

2. Checking DSP/BIOS (Real Time Operating System) version
Your Version : 5.33.03
Required version: 5.32.04
Required by : Embedded IDE Link 4.0
Required for : Code generation

3. Checking CGT (Code Generation Tools) version
Your Version : 6.1.5
Required version: 6.1.4
Required by : Embedded IDE Link 4.0
Required for : Code generation

Finally, set the environment variables Embedded IDE Link requires to
use the CCS IDE and generate code for your board. Use 'setup' as the
action argument, or omit the action argument:

checkEnvSetup('ccs', 'dm6437evm')

1. Checking CCS (Code Composer Studio) version
Required version: 3.3.80.11
Required by : Embedded IDE Link 4.0
Required for : Code generation
Your Version : 3.3.80.11

2. Checking DSP/BIOS (Real Time Operating System) version
Required version: 5.32.04
Required by : Embedded IDE Link 4.0

9-26

checkEnvSetup

Required for : Code generation
Your Version : 5.33.03
Incompatible version detected. DSP/BIOS version does not satisfy

3. Checking CGT (Code Generation Tools) version
Required version: 6.1.4
Required by : Embedded IDE Link 4.0
Required for : Code generation
Your Version : 6.1.5
Incompatible version detected. CGT version does not satisfy prod

4. Checking DM6437EVM DVSDK (Digital Video Software Developers Kit)
Required version: 1.01.00.15
Required by : Embedded IDE Link 4.0
Required for : Code generation
Your Version : 1.01.00.15
Setting environment variable "DVSDK_EVMDM6437_INSTALLDIR" to
Setting environment variable "CSLR_DM6437_INSTALLDIR" to "C:\
Setting environment variable "PSP_EVMDM6437_INSTALLDIR" to "C
Setting environment variable "NDK_INSTALL_DIR" to "C:\dvsdk_1

9-27

close

Purpose Close project in IDE window

Note close(,'text') produces an error.

Syntax IDE_Obj.close(filename,'project')

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description Use IDE_Obj.close(filename,'project') to close a specific project,
all projects, or the active open project.

For the filename argument:

• To close all project files, enter 'all'.

• To close a specific project, enter the project file name, such as
'myProj'.If the file is not an open file in the IDE, MATLAB returns a
warning message.

• To close the active project, enter [].

With the VisualDSP++ IDE, to close the current project group (if
filename is 'all' or []), replace 'project'with 'projectgroup'.

Note Save changes to your files and projects in the IDE before you use
close. The close method does not save changes, nor does it prompt
you to save changes, before it closes the project.

9-28

close

Examples To close all open project files:

IDE_Obj.close('all','project')

To close the open project, myProj:

IDE_Obj.close('myProj','project')

To close the active open project:

IDE_Obj.close([],'project')

With the VisualDSP++ IDE, to close all open project groups:

IDE_Obj.close('all','projectgroup')

With the VisualDSP++ IDE, to close the active project group:

IDE_Obj.close([],'projectgroup')

See Also add

open

save

9-29

configure

Purpose Define size and number of RTDX channel buffers

Note configure produces a warning on C5000 and C6000 processors.
We will remove this method from a future version of the software.

Syntax configure(rx,length,num)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description configure(rx,length,num) sets the size of each main (host) buffer,
and the number of buffers associated with rx. Input argument length
is the size in bytes of each channel buffer and num is the number of
channel buffers to create.

Main buffers must be at least 1024 bytes, with the maximum defined
by the largest message. On 16-bit processors, the main buffer must
be 4 bytes larger than the largest message. On 32-bit processors, set
the buffer to be 8 bytes larger that the largest message. By default,
configure creates four, 1024-byte buffers. Independent of the value of
num, the IDE allocates one buffer for each processor.

Use CCS to check the number of buffers and the length of each one.

Examples Create a default link to CCS and configure six main buffers of 4096
bytes each for the link.

IDE_Obj=ticcs % Create the CCS link with default values.

TICCS Object:

API version : 1.0

Processor type : C67

Processor name : CPU

Running? : No

9-30

configure

Board number : 0

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

rx=IDE_Obj.rtdx % Create an alias to the rtdx portion.

RTDX channels : 0

configure(rx,4096,6) % Use the alias rx to configure the length

% and number of buffers.

After you configure the buffers, use the RTDX tools in the IDE to verify
the buffers.

See Also readmat, readmsg, write, writemsg

9-31

connect

Purpose Connect IDE to processor

Syntax IDE_Obj.connect()
IDE_Obj.connect(debugconnection)
IDE_Obj.connect(...,timeout)

IDEs This function works with the following IDEs:

• Green Hills MULTI

Description IDE_Obj.connect() connects the IDE to the processor hardware or
simulator. IDE_Obj is the IDE handle.

IDE_Obj.connect(debugconnection) connects the IDE to the
processor using the debug connection you specify in debugconnection.
Enter debugconnection as a string enclosed in single quotation marks.
IDE_Obj is the IDE handle. Refer to Examples to see this syntax in use.

IDE_Obj.connect(...,timeout) adds the optional parameter timeout
that defines how long, in seconds, MATLAB waits for the specified
connection process to complete. If the time-out period expires before the
process returns a completion message, MATLAB generates an error and
returns. Usually the program connection process works correctly in
spite of the error message

Example The input argument stringdebugconnection specify the processor
to connect to with the IDE. This example connects to the
Freescale™ MPC5554 simulator. The debugconnection string is
simppc -fast -dec -rom_use_entry -cpu=ppc5554.

IDE_Obj.connect('simppc -fast -dec -rom_use_entry -cpu=ppc5554')

See Also load

run

9-32

datatypemanager

Purpose Open Data Type Manager

datatypemanager produces a warning. We will remove this method
from a future version of the software.

Syntax IDE_Obj.datatypemanager
IDE_Obj2 = IDE_Obj.datatypemanager

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description IDE_Obj.datatypemanager opens the Data Type Manager (DTM)
with data type information about the project to which IDE_Obj refers.
With the type manager open, you can add type definitions (typedefs)
from your project to MATLAB software so it can interpret them. You
add your typedefs because MATLAB software cannot determine or
understand typedefs in your function prototypes remotely across the
interface to CCS.

Before using the typedef with a function object, the custom type
definition in your prototype must appear on the Typedef name
(Equivalent data type) list.

When the DTM opens, various information and options displays in the
Data Type Manager dialog box:

• Typedef name (Equivalent data type)— provides a list of default
data types. When you create a typedef, it appears added to this list.

• Add typedef— opens the Add Typedef dialog box so you can add
one or more typedefs to your project. Your added typedef appears on
the Typedef name (Equivalent data type) list. Also, when you
pass the IDE_Obj object to the DTM, and then add a typedef, the
command

IDE_Obj.type

9-33

datatypemanager

returns a list of the data types in the object including the typedefs
you added.

• Remove typedef — removes a selected typedef from the Typedef
name (Equivalent data type) list.

• Load session— loads a previously saved session so you can use the
typedefs you defined earlier without reentering them.

• Refresh list — updates the list in Typedef name (Equivalent
data type). Refreshing the list ensures that the contents are
current. Changing your project data type content or loading a new
project updates the type definitions in the DTM.

• Close — closes the DTM and prompts you to save the session
information. This action is the only way to save your work in this
dialog box. Saving the session creates a MATLAB file you can reload
into the DTM later.

Clicking Close in the DTM prompts you to save your session. Saving
the session creates a MATLAB file that contains operations that
create your final list of data types. These data types are identical to
the ones in the Typedef name list.

The stored MATLAB file contains a function that includes the add
and remove operations you used to create the list of data types in the
DTM. For each time you added a typedef in the DTM, the MATLAB
file contains an add command that adds the new type definition to
the IDE_Obj.type property. When you remove a data type, you see
an equivalent clear command that removes a data type from the
IDE_Obj.type object.

Note This method saves to the generated MATLAB file, all the
operations that add and remove data types to the DTM during a
session. The file includes mistakes you make while creating or
removing type definitions. When you load your saved session into the
DTM, you see the same error messages you saw during the session.
Keep in mind that you have already corrected these errors.

9-34

datatypemanager

The first line of the MATLAB file is a function definition, where the
name of the function is the filename of the session you saved.

IDE_Obj2 = IDE_Obj.datatypemanager returns the IDE_Obj2 ticcs
object while it opens the DTM. IDE_Obj2 represents an alias to IDE_Obj.
Objects IDE_Obj and IDE_Obj2 are not independent objects. When you
change a property of either IDE_Obj or IDE_Obj2, the corresponding
property in the other object changes as well.

Data Type Manager

When you create objects that access functions in a project, MATLAB
software can recognize most data types that you use in your project.
However, if the functions use one or more custom type definitions,
MATLAB software cannot recognize the data type and cannot work
with the function. To overcome this problem, the Data Type Manager
provides the capability to define your typedefs to MATLAB software.

Entering

IDE_Obj.datatypemanager

at the MATLAB prompt opens the DTM.

9-35

datatypemanager

Before you add a type definition, the Typedef name (Equivalent data
type) list shows a number of data types already defined:

• Void(void)— void return argument for a function

• Float(float)— float data type used in a function input or return
argument

• Double(double) — double data type used in a function input or
return argument

• Long(long) — long data type used in a function input or return
argument

• Int(int) — int data type used in a function input or return
argument

9-36

datatypemanager

• Short(short)— short data type used in a function input or return
argument

• Char(char)— character data type used in a function input or return
argument

The lowercase versions of the data types appear because MATLAB
software does not recognize the initial capital versions automatically.
The data type entry maps the project data type with the initial capital
letter to the lowercase MATLAB software data type.

Although not recommended, you can use mixed case typedef names,
so long as the equivalent data type uses lowercase. In particular,
typedefs that refer to other typedefs are likely to resolve to a data type
in lowercase.

Adding a type definition adds the new data type to the list of typedefs.

Remove any existing or new type definitions with the Remove typedef
option.

9-37

datatypemanager

Add Typedef Dialog Box

Clicking Add typedef in the DTM opens the List of Known Data
Types dialog box. As shown in this figure, you add your custom type
definitions here.

When you have used custom type definitions in your program or
project, specify what they mean to MATLAB software. The Typedef
option lets you enter the name of the typedef in your program and
select an equivalent type from the Known Types list. By defining
your type definitions in this dialog box, you enable MATLAB software
to understand and work with them. For example, when you return
the data to the MATLAB workspace or send data from the workspace
to your project.

After defining each typedef, the Equivalent type option shows the
type you specified for each type definition, when you enter it in the
Typedef field or select it from the Known Types list.

9-38

datatypemanager

Options in this dialog box let you review the data types you are using
or that are available in your projects. By selecting different data type
categories from the Known Types list, you can see all of the supported
data types.

From the list of known data types, choose one of the following data
type categories:

• MATLAB Types

Data Type Description

int8 8-bit integer data

uint8 Unsigned 8-bit integer data

int16 16-bit integer data

uint16 Unsigned 16-bit integer data

int32 32-bit integer data

9-39

datatypemanager

Data Type Description

uint32 Unsigned 32-bit integer data

int64 64-bit integer data

uint64 Unsigned 64-bit integer data

single 32-bit IEEE® floating-point data

double 64-bit IEEE floating-point data

• TI C Types

Data Type Description (For C6000 Compiler)

char 8-bit character data with a sign bit

unsigned char 8-bit character data

signed char 8-bit character data

short 16-bit numeric data

unsigned short Unsigned 16-bit numeric data

signed short 16-bit numeric data with sign designation

int 32-bit integer numeric data

unsigned int 32-bit integer numerics without sign
information

signed int 32-bit integer numerics with sign
information

long 40-bit data with sign bit. This type is not
the same as int.

unsigned long 40-bit data without information about the
sign of the number

signed long 40-bit data without information about the
sign of the number represented

float 32-bit numeric data

9-40

datatypemanager

Data Type Description (For C6000 Compiler)

double 64-bit numeric data

long double On the C2000 and C5000 processors –
32-bit IEEE floating-point data

On the C6000 processors – 64-bit IEEE
floating-point data

Numbers of bits change depending on the processor and compiler.
For more information about Texas Instruments data types and
specific processors or compilers, refer to your compiler documentation
from Texas Instruments processors.

• TI Fixed-Point Types

Data Type Description

Q0.15 Numeric data with 16-bit word length and
15-bit fraction length

Q0.31 32-bit word length numeric data with fraction
length of 31 bits

• Struct, Union, Enum types

If the program you load on the processor includes one or more of
struct, union, or enum data types, the type definitions show up on
this list. Until you load a program on the processor, this list is empty
and trying to access the list generates an error message.

Load a program, if you have not already done so, by clicking Load
CCS Program and selecting a .out file to load on your processor.

• When the load process works, you see the name of the file you loaded
in Loaded program. Otherwise you get an error message that the
load failed.

Only programs that you load from this dialog box appear in Program
loaded. Programs that you already loaded on your processor do not

9-41

datatypemanager

appear in the Loaded program option. MATLAB software cannot
determine what program you have loaded.

• Others such as pointers and typedefs

Like struct, union, and enum data types, the Others list is empty
until you define one or more typedefs. Unlike the Struct, Union,
Enum types list, loading a program does not populate this list with
typedefs from the program. Define them explicitly in this dialog box.

Custom type definitions can refer to other typedefs in your project.
Nesting typedefs works after you define the necessary custom types. To
create a typedef that uses another typedef, define the nested (inner)
definition, and then define the outer definition as a pointer to the nested
definition. Refer to Examples.

Program loaded— if you loaded the program from this dialog box, this
parameter tells you the name of the program loaded on the processor. If
not, Program loaded does not report the program name.

Load CCS Program — opens the Load Program dialog box so you
can select and load a .out file to your processor.

Examples This set of examples show how to create custom type definitions with
the DTM. Each example shows the List of Known Data Types dialog
box with the selections or entries for creating the typedef.

Start the examples by creating a ticcs object:

IDE_Obj=ticcs;

Now start the DTM with the IDE_Obj object. So far you have not loaded
a file on the processor.

IDE_Obj.datatypemanager;

With the DTM open, you can create a few custom data types.

9-42

datatypemanager

First Example

Create a typedef (typedef1) that uses a MATLAB software data type.
typedef1 uses the equivalent data type uint32.

9-43

datatypemanager

Second Example

Create a second typedef (typedef2) that uses one of the TI C data
types. Define typedef2 to use the signed long data type.

9-44

datatypemanager

Third Example

Create a “nested” typedef (typedef3) that refers to another typedef
(typedef2).

Notice that the referenced typedef, typedef2, is a pointer (indicated by
the added asterisk). Using the pointer form lets MATLAB software
recognize the data type that typedef2 represents. If you do not use
the pointer, MATLAB software converts typedef3 to a default value
equivalent data type, in this case, int.

9-45

datatypemanager

The next figure shows typedef4 created to use typedef2 rather than
typedef2* for a nested typedef. Under Equivalent type, typedef4 has
an equivalent data type of typedef2, as specified. But, when you look at
the list of known data types in the Data Type Manager dialog box, you
see typedef4 maps to int, not typedef2, or eventually signed long.

Here is the DTM after you create all the example custom data types.
Take note of typedef4 in this listing. You see typedef4 defaults to an
equivalent data type int, where typedef3, also a nested type definition,
retains the equivalent data type you assigned. Now you are ready
to use a function that includes your custom type definitions in your
hardware-in-the-loop development work.

9-46

datatypemanager

9-47

dir

Purpose Files and directories in current IDE window

Syntax IDE_Obj.dir
d=IDE_Obj.dir

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.dir lists the files and directories in the IDE working directory,
where IDE_Obj is the object that references the IDE. IDE_Obj can be
either a single object, or a vector of objects. When IDE_Obj is a vector,
dir returns the files and directories referenced by each object.

d=IDE_Obj.dir returns the list of files and directories as an M-by-1
structure in d with the fields for each file and directory shown in the
following table.

Field Name Description

name Name of the file or directory.

date Date of most recent file or directory
modification.

bytes Size of the file in bytes. Directories return 0
for the number of bytes.

isdirectory 0 if it is a file, 1 if it is a directory.

datenum The Eclipse IDE and Code Composer Studio
IDE also return the modification date as a
MATLAB serial date number.

To view the entries in structure d, use an index in the syntax at the
MATLAB prompt, as shown by the following examples.

9-48

dir

• d(3) returns the third element in the structure.

• d(10) returns the tenth element in the structure d.

• d(4).date returns the date field value for the fourth structure
element.

See Also cd

open

9-49

disable

Purpose Disable RTDX interface, specified channel, or all RTDX channels

Note Support for disable on C5000 and C6000 processors will be
removed in a future version.

Syntax disable(rx,'channel')
disable(rx,'all')
disable(rx)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description disable(rx,'channel') disables the open channel specified by the
string channel, for rx. Input argument rx represents the RTDX portion
of the associated link to the IDE.

disable(rx,'all') disables all the open channels associated with rx.

disable(rx) disables the RTDX interface for rx.

Important Requirements for Using disable

On the processor side, disable depends on RTDX to disable channels or
the interface. To use disable, meet the following requirements:

1 The processor must be running a program.

2 You enabled the RTDX interface.

3 Your processor program polls periodically.

Examples When you have opened and used channels to communicate with a
processor, disable the channels and RTDX before ending your session.
Use disable to switch off open channels and disable RTDX, as follows:

disable(IDE_Obj.rtdx,'all') % Disable all open RTDX channels.

9-50

disable

disable(IDE_Obj.rtdx) % Disable RTDX interface.

See Also close, enable, open

9-51

display

Purpose Properties of IDE handle

Syntax IDE_Obj.display()

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.display() displays the properties and property values of the
IDE handleIDE_Obj.

For example, after you creating IDE_Obj with a constructor, using the
display method with IDE_Obj returns a set of properties and values:

IDE_Obj.display

IDE Object:
Property1 : valuea
Property2 : valueb
Property3 : valuec
Property4 : valued

See Also get in the MATLAB Function Reference

9-52

eclipseide

Purpose Create handle object to interact with Eclipse IDE

Syntax IDE_Obj = eclipseide
IDE_Obj = eclipseide('timeout', period)

IDEs This function works with the following IDEs:

• Eclipse IDE

Description Before using eclipseide for the first time:

• Install the correct software versions of the Eclipse IDE, Eclipse
software add-ons, and GNU tools. For detailed information and
instructions, see “Getting Started” topic for Eclipse IDE.

• Use the eclipseidesetup function to configure and install a plug-in
that enables Embedded IDE Link product to work with Eclipse IDE.

Use IDE_Obj = eclipseide to create an IDE handle object which you
can use to communicate with the Eclipse IDE and processors connected
to the Eclipse IDE. After creating the IDE handle object, you can use
any of the methods listed in “Eclipse IDE” on page 8-11.

When you use eclipseide, the Embedded IDE Link software uses the
plug-in to open a session with Eclipse. If Eclipse is not already running,
the eclipseide function starts the Eclipse IDE. The session connects
via the IP port number and uses the workspace you specified previously
with eclipseidesetup.

When you build a model, Embedded IDE Link uses eclipseide to
create an IDE handle object. In that case, the software gets the name
of the IDE handle object from the IDE link handle name parameter
(default value: IDE_Obj) in the configuration parameters for the model.

To assign a timeout period to the handle object, enter: IDE_Obj =
eclipseide('timeout', period)

For period, enter the number of seconds the handle object waits for
processor operations (such as load) to complete. Operations that exceed

9-53

eclipseide

the timeout period generate timeout errors. The default period is 10
seconds.

Examples For example, to create an object handle with a 20-second timeout
period, enter:

>> IDE_Obj = eclipseide('timeout',20)
Starting Eclipse(TM) IDE...

ECLIPSEIDE Object:
Default timeout : 20.00 secs
Eclipse folder : C:\eclipse3.4\eclipse
Eclipse workspace: C:\WINNT\Profiles\rdlugyhe\workspace
Port number : 5555
Processor site : local

See Also eclipseidesetup

9-54

eclipseidesetup

Purpose Configure Embedded IDE Link to work with Eclipse IDE

Syntax

IDEs This function works with the following IDEs:

• Eclipse IDE

Description Before using eclipseidesetup for the first time, install the correct
software versions of the Eclipse IDE, Eclipse software add-ons, and
GNU tools. For detailed information and instructions, see “Getting
Started” topic for Eclipse IDE.

To avoid potential build errors later on, close Eclipse IDE before you
run eclipseidesetup. For more information, see Build Errors.

Use eclipseidesetup at the MATLAB command line to set up
Embedded IDE Link to work with Eclipse IDE. This action displays a
dialog box which you use to configure and add an Embedded IDE Link
plugin to the Eclipse IDE. For detailed instructions and examples, see
“Configuring Embedded IDE Link to Work With Eclipse”.

When to use eclipseidesetup:

• After you install or reinstall the Eclipse IDE.

• Before you use the eclipseide constructor function to create an IDE
handle object for the first time.

See Also eclipseide

9-55

enable

Purpose Enable RTDX interface, specified channel, or all RTDX channels

Note Support for enable on C5000 and C6000 processors will be
removed in a future version.

Syntax enable(rx,'channel')
enable(rx,'all')
enable(rx)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description enable(rx,'channel') enables the open channel specified by the
string channel, for RTDX link rx. The input argument rx represents
the RTDX portion of the associated link to the IDE.

enable(rx,'all') enables all the open channels associated with rx.

enable(rx) enables the RTDX interface for rx.

Important Requirements for Using enable

On the processor side, enable depends on RTDX to enable channels. To
use enable, meet the following requirements:

1 The processor must be running a program when you enable the
RTDX interface. When the processor is not running, the state
defaults to disabled.

2 Enable the RTDX interface before you enable individual channels.

3 Channels must be open.

4 Your processor program must poll periodically.

9-56

enable

5 Using code in the program running on the processor to enable
channels overrides the default disabled state of the channels.

Examples To use channels to RTDX, you must both open and enable the channels:

IDE_Obj = ticcs; % Create a new connection to the IDE.

enable(IDE_Obj.rtdx) % Enable the RTDX interface.

open(IDE_Obj.rtdx,'inputchannel','w') % Open a channel for sending

% data to the processor.

enable(IDE_Obj.rtdx,'inputchannel') % Enable the channel so you can use

% it.

See Also disable, open

9-57

flush

Purpose Flush data or messages from specified RTDX channels

Note flush support for C5000 and C6000 processors will be removed
in a future version.

Syntax flush(rx,channel,num,timeout)
flush(rx,channel,num)
flush(rx,channel,[],timeout)
flush(rx,channel)
flush(rx,'all')

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description flush(rx,channel,num,timeout) removes num oldest data messages
from the RTDX channel queue specified by channel in rx. To determine
how long to wait for the function to complete, flush uses timeout (in
seconds) rather than the global timeout period stored in rx. flush
applies the timeout processing when it flushes the last message in the
channel queue, because the flush function performs a read to advance
the read pointer past the last message. Use this calling syntax only
when you specify a channel configured for read access.

flush(rx,channel,num) removes the num oldest messages from the
RTDX channel queue in rx specified by the string channel. flush uses
the global timeout period stored in rx to determine how long to wait
for the process to complete. Compare this to the previous syntax that
specifies the timeout period. Use this calling syntax only when you
specify a channel configured for read access.

flush(rx,channel,[],timeout) removes all data messages from the
RTDX channel queue specified by channel in rx. To determine how long
to wait for the function to complete, flush uses timeout (in seconds)
rather than the global timeout period stored in rx. flush applies the
timeout processing when it flushes the last message in the channel

9-58

flush

queue, because flush performs a read to advance the read pointer
past the last message. Use this calling syntax only when you specify a
channel configured for read access.

flush(rx,channel) removes all pending data messages from the
RTDX channel queue specified by channel in rx. Unlike the preceding
syntax options, you use this statement to remove messages for both
read-configured and write-configured channels.

flush(rx,'all') removes all data messages from all RTDX channel
queues.

When you use flush with a write-configured RTDX channel, Embedded
IDE Link sends all the messages in the write queue to the processor.
For read-configured channels, flush removes one or more messages
from the queue depending on the input argument num you supply and
disposes of them.

Examples To demonstrate flush, this example writes data to the processor over
the input channel, then uses flush to remove a message from the read
queue for the output channel:

IDE_Obj = ticcs;
rx = IDE_Obj.rtdx;
open(rx,'ichan','w');
enable(rx,'ichan');
open(rx,'ochan','r');
enable(rx,'ochan');
indata = 1:10;
writemsg(rx,'ichan',int16(indata));
flush(rx,'ochan',1);

Now flush the remaining messages from the read channel:

flush(rx,'ochan','all');

See Also enable, open

9-59

getbuildopt

Purpose Generate structure of build tools and options

Syntax bt=IDE_Obj.getbuildopt
cs=IDE_Obj.getbuildopt(file)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description bt=IDE_Obj.getbuildopt returns an array of structures in bt. Each
structure includes an entry for each defined build tool. This list of
build tools comes from the active project and active build configuration.
Included in the structure is a string that describes the command-line
tool options. bt uses the following format for elements in the structures:

• bt(n).name — Name of the build tool.

• bt(n).optstring— command-line switches for build tool in bt(n).

cs=IDE_Obj.getbuildopt(file) returns a string of build options for
the source file specified by file. file must exist in the active project.
The resulting cs string comes from the active build configuration. The
type of source file (from the file extension) defines the build tool used
by the cs string.

9-60

ghsmulti

Purpose Create handle object to interact with MULTI IDE

Syntax IDE_Obj = ghsmulti
IDE_Obj=ghsmulti('propertyname1',propertyvalue1,'propertyname2',…
propertyvalue2,'timeout',value)

IDEs This function works with the following IDEs:

• Green Hills MULTI

Description IDE_Obj = ghsmulti returns object IDE_Obj that communicates with
a target processor. Before you use this command for the first time,
use ghsmulticonfig to configure your MULTI software installation
to identify the location of your MULTI software, your processor
configuration, your debug server, and the host name and port number
of the Embedded IDE Link service.

ghsmulti creates an interface between MATLAB and Green Hills
MULTI. If this is the first time you have used ghsmulti, supply the
properties and property values shown in following table as input
arguments:

Property
Name

Default Value Description

hostname localhost Specifies the name of the machine
hosting theEmbedded IDE Link
service. The default host name
indicates that the service is on the
local PC. Replace localhost with
the name you entered in Host
name on the Embedded IDE Link
Configuration dialog box.

portnum 4444 Specifies the port to connect
to the Embedded IDE Link
service on the host machine.
Replace portnum with the number

9-61

ghsmulti

Property
Name

Default Value Description

you entered in Port number
on the Embedded IDE Link
Configuration dialog box.

When you invoke ghsmulti, it starts the Embedded IDE Link service. If
you selected the Show server status window option on theEmbedded
IDE Link Configuration dialog box (refer to ghsmulticonfig) when
you configured your MULTI installation, the service appears in
your Microsoft Windows task bar. If you clear Show server status
window, the service does not appear.

Parameters that you pass as input arguments to ghsmulti are
interpreted as object property definitions. Each property definition
consists of a property name followed by the desired property value
(often called a PV, or property name/property value, pair).

Note The output object name you provide for ghsmulti cannot begin
with an underscore, such as _IDE_Obj.

IDE_Obj =
ghsmulti('hostname','name','portnum','number',...) returns a
ghsmulti object IDE_Obj that you use to interact with a processor in
the IDE from the MATLAB command prompt. If you enter a hostname
or portnum that are not the same as the ones you provided when you
configured your MULTI installation, Embedded IDE Link software
returns an error that it could not connect to the specified host and
port and does not create the object.

You use the debugging methods (refer to “Debug Operations” on page 8-6
for the methods available) with this object to access memory and control
the execution of the processor. ghsmulti also enables you to create an
array of objects for a multiprocessor board, where each object refers to
one processor on the board. When IDE_Obj is an array of objects, any
method called with IDE_Obj as an input argument is sent sequentially

9-62

ghsmulti

to all processors connected to the ghsmulti object. Green Hills MULTI
provides the communication between the IDE and the processor.

After you build the ghsmulti object IDE_Obj, you can review the object
property values with get, but you cannot modify the hostname and
portnum property values. You can use set to change the value of other
properties.

IDE_Obj=ghsmulti('propertyname1',propertyvalue1,'propertyname2',…
propertyvalue2,'timeout',value) sets the global time-out value in
seconds to value in IDE_Obj. MATLAB waits for the specified time-out
period to get a response from the IDE application. If the IDE does not
respond within the allotted time-out period, MATLAB exits
from the evaluation of this function.

Examples This example demonstrates ghsmulti using default values.

IDE_Obj = ghsmulti('hostname','localhost','portnum',4444);

returns a handle to the default host and port number—localhost and
4444.

IDE_Obj = ghsmulti('hostname','localhost','portnum',4444)

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

See Also ghsmulticonfig

9-63

ghsmulticonfig

Purpose Configure Embedded IDE Link to work with MULTI IDE

Syntax ghsmulticonfig

IDEs This function works with the following IDEs:

• Green Hills MULTI

Description ghsmulticonfig launches the Embedded IDE Link Configuration
dialog box that you use to configure your Embedded IDE Link software
installation to work with MULTI.

Note The Embedded IDE Link Configuration dialog box is the only
place you set the host name and port number configuration.

The dialog box, shown in the following figure, provides controls that
specify parameters such as where you installed MULTI and the name of
the host machine to use.

9-64

ghsmulticonfig

Directory
Tells Embedded IDE Link software the path to your Green Hills
MULTI software installation. Enter the full path to the Green
Hills MULTI executable, multi.exe, in your installation. To
search for the executable file, click Browse.

If you do not provide or select a correct path to the executable file,
Embedded IDE Link software ignores your entry and returns an
error message saying it could not find the executable multi.exe
in the specified or selected directory.

Configuration
Specifies the primary processor family to use to develop your
projects in MULTI. This corresponds to a .tgt file you select
before you can download and execute code. Select your family
file from the list. In many cases, the family_standalone.tgt
option is the appropriate choice. For example, if you develop on
the Freescale MPC5xx, you could select ppc_standalone.tgt.

9-65

ghsmulticonfig

Embedded IDE Link software stores your selection. You do not
need to repeat this setup task unless you change processors.

Debug server
Use this parameter to enter the name of your debug connection.
Embedded IDE Link software uses this connection to specify
options about the processor, such as processor to use, board
support library, and processor endianness. For more information
about the Debug server, refer to your Green Hills MULTI
documentation.

For example, if you are using the Freescale
MPC5554 simulator, you could enter the string
simppc -cpu=ppc5554 -dec -rom_use_entry. Valid
strings for specifying simulators in Debug server appear in the
following table.

Processor Type Configuration Debug Server Parameter
String

ARM Simulator arm_standalone.tgt simarm –cpu=arm9

MPC5554 Simulator ppc_standalone.tgt simppc -cpu=ppc5554 -dec
-rom_use_entry

MPC7400 Simulator ppc_standalone.tgt simppc -cpu=7400 -dec

BlackFin
537

Simulator bf_standalone.tgt simbf -cpu=bf537 -fast

NEC V850 Simulator v800_standalone.tgt sim850 -cpu=v850

NEC V850 NEC
Minicube

v800_standalone.tgt 850eserv2 -minicube -noiop
-df=C:/ghs/multi505/v850e/
df3707.800 -id ffffffffff

MPC5554 Embedded
target
Green Hills
Probe

ppc_standalone.tgt mpserv_standard.mbs mpserv
-usb

9-66

ghsmulticonfig

For information about using hardware in your development work,
refer to Connecting to Your Target in the MULTI documentation.
The string you specify for Debug server can be the name of the
connection if you have one configured in the Connection Organizer
in MULTI.

Host name
Specify the name of the machine that runs the Embedded IDE
Link service. Enter localhost if the service runs on your PC.
localhost is the only supported host name.

Port number
Specify the port the Embedded IDE Link service uses to
communicate with MULTI. The default port number is 4444. If
you change the port value, verify that the port is available for
use. If the port you assign is not available, Embedded IDE Link
software returns an error when you try to create a ghsmulti
object.

Show server status window
Select this option to display the Embedded IDE Link service
status in the Microsoft Windows Task bar. Clearing the option
removes the service from the task bar. Best practice is to select
this option. Keeping this option selected enables the software to
shut down the communication services for Green Hills MULTI
completely.

9-67

halt

Purpose Halt program execution by processor

Syntax IDE_Obj.halt
IDE_Obj.halt(timeout)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.halt stops the program running on the processor. After you
issue this command, MATLAB waits for a response from the processor
that the processor has stopped. By default, the wait time is 10 seconds.
If 10 seconds elapses before the response arrives, MATLAB returns an
error. In this syntax, the timeout period defaults to the global timeout
period specified in IDE_Obj. Use IDE_Obj.get to determine the global
timeout period. However, the processor usually stops in spite of the
error message.

To resume processing after you halt the processor, use run. Also, the
IDE_Obj.read('pc') function can determine the memory address
where the processor stopped after you use halt

IDE_Obj.halt(timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

Examples

Use one of the provided demonstration programs to show how halt
works. Load and run one of the demonstration projects. At the MATLAB
prompt, check whether the program is running on the processor.

9-68

halt

IDE_Obj.isrunning

ans =

1

IDE_Obj.isrunning % Alternate syntax for checking the run status.

ans =

1

IDE_Obj.halt % Stop the running application on the processor.

IDE_Obj.isrunning

ans =

0

Issuing the halt stops the process on the processor. Checking in the IDE
confirms that the process has stopped.

See Also isrunning

reset

run

9-69

info

Purpose Information about processor

Syntax adf=IDE_Obj.info
adf = IDE_Obj.info
adf = info(rx)
adf = IDE_Obj.info
adf = info(rx)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description adf=IDE_Obj.info returns debugger or processor properties associated
with the IDE handle object, IDE_Obj.

Using info with multiprocessor boards

For multiprocessor targets, the info method returns properties for each
processor with the array.

Examples
Using info with IDE_Obj, which is associated with 1 processor:

oinfo = IDE_Obj.info;

Using info with IDE_Obj, which is associated with 2 processors:

oinfo = IDE_Obj.info; % Returns a 1x2 array of infor struct

Using info with MULTI IDE

Before using info, open a program in the MULTI IDE debugger. When
you use info with an IDE handle object for the MULTI IDE, the info
method returns the following information:

9-70

info

Structure Element Data Type Description

adf.CurBrkPt String When the debugger is stopped at a breakpoint, the
field reports the index of the breakpoint. Otherwise,
this value is-1.

adf.File String Name of the current file shown in the debugger
source pane.

adf.Line Integer Line number of the cursor position in the file in the
debugger source pane. If no file is open in the source
pane, this value is -1

adf.MultiDir String Full path to your IDE installation the root directory).
For example

'C:\ghs5_01'

adf.PID Double Process ID from the debug server in the IDE.

adf.Procedure String Current procedure in the debugger source pane.

adf.Process Double Program number, defined by the IDE, of the current
program.

adf.Remote String Status of the remote connection, either Connected
or Not connected.

adf.Selection String The string highlighted in the debugger. If there is
no string highlighted, this value is ’null’.

9-71

info

Structure Element Data Type Description

adf.State String State of the loaded program. The possible reported
states appear in the following list:
• About to resume

• Dying

• Just executed

• Just forked

• No child

• Running

• Stopped

• Zombied

For details about the states and their definitions,
refer to your IDE debugger documentation.

adf.Target Double Unique identifier the indicates the processor family
and variant.

adf.TargetOS Double Real-time operating system on the processor if one
exists. Provides both the major and minor revision
information.

adf.TargetSeries Double Whether the processor belongs to a series of
processors. For details about the processor series,
refer to your IDE debugger documentation.

info returns valid information when the IDE debugger is connected to
processor hardware or a simulator.

Examples
On a PC with a simulator configured in the IDE, info returns the
following configuration information after stopping a running simulation:

adf=info(test_obj1)

9-72

info

adf =

CurBrkPt: 0

File: '...\Compute_Sum_and_Diff_multilink\Compute_Sum_and_Diff_main.c'

Line: 3

MultiDir: 'C:\ghs5_01'

PID: 2380

Procedure: 'main'

Process: 0

Remote: 'Connected'

Selection: '(null)'

State: 'Stopped'

Target: 4325392

TargetOS: [2x1 double]

TargetSeries: 3

When you create an IDE handle, the response from info looks like the
following before you load a project.

adf=info(test_obj2)

test_obj2 =

CurBrkPt: []
File: []
Line: []

MultiDir: []
PID: []

Procedure: []
Process: []
Remote: []

Selection: []
State: []

Target: []
TargetOS: []

TargetSeries: []

9-73

info

Using info with CCS IDE

adf = IDE_Obj.info returns the property names and property values
associated with the processor accessed by IDE_Obj. adf is a structure
containing the following information elements and values:

Structure Element Data Type Description

adf.procname String Processor name as defined in the CCS setup utility.
In multiprocessor systems, this name reflects the
specific processor associated with IDE_Obj.

adf.isbigendian Boolean Value describing the byte ordering used by the
processor. When the processor is big-endian, this
value is 1. Little-endian processors return 0.

adf.family Integer Three-digit integer that identifies the processor
family, ranging from 000 to 999. For example, 320
for Texas Instruments digital signal processors.

adf.subfamily Decimal Decimal representation of the hexadecimal
identification value that TI assigns to the processor
to identify the processor subfamily. IDs range
from 0x000 to 0x3822. Use dec2hex to convert the
value in adf.subfamily to standard notation. For
example

dec2hex(adf.subfamily)

produces ’67’ when the processor is a member of the
67xx processor family.

adf.timeout Integer Default timeout value MATLAB software uses when
transferring data to and from CCS. All functions that
use a timeout value have an optional timeout input
argument. When you omit the optional argument,
MATLAB software uses this default value – 10s.

adf = info(rx) returns info as a cell arraying containing the names of
your open RTDX channels.

9-74

info

Examples
On a PC with a simulator configured in CCS IDE, info returns the
configuration for the processor being simulated:

IDE_Obj.info

ans =

procname: 'CPU'
isbigendian: 0

family: 320
subfamily: 103

timeout: 10

This example simulates the TMS320C6211 processor running in
little-endian mode. When you use CCS Setup Utility to change the
processor from little-endian to big-endian, info shows the change.

IDE_Obj.info

ans =

procname: 'CPU'
isbigendian: 1

family: 320
subfamily: 103

timeout: 10

If you have two open channels, chan1 and chan2,

adf = info(rx)

returns

adf =
'chan1'
'chan2'

9-75

info

where adf is a cell array. You can dereference the entries in adf to
manipulate the channels. For example, you can close a channel by
dereferencing the channel in adf in the close function syntax.

close(rx.adf{1,1})

Using info with VisualDSP++ IDE

adf = IDE_Obj.info returns the property names and property values
associated with the processor accessed by IDE_Obj. The adf variable is
a structure containing the following information elements and values:

Structure Element Data Type Description

adf.procname String Processor name as defined in the CCS setup utility.
In multiprocessor systems, this name reflects the
specific processor associated with IDE_Obj.

adf.proctype String String with the type of the DSP processor. The type
property is the processor type like "ADSP-21065L"
or "ADSP-2181".

adf.revision String String with the silicon revision string of the
processor.

adf = info(rx) returns info as a cell arraying containing the names of
your open RTDX channels.

Examples
When you have an adivdsp object IDE_Obj, info provides information
about the object:

IDE_Obj = adivdsp('sessionname','Testsession')

ADIVDSP Object:
Session name : Testsession
Processor name : ADSP-BF533
Processor type : ADSP-BF533
Processor number : 0
Default timeout : 10.00 secs

9-76

info

objinfo = IDE_Obj.info

objinfo =

procname: 'ADSP-BF533'
proctype: 'ADSP-BF533'
revision: ''

objinfo.procname

ans =

ADSP-BF533

See Also dec2hex, get, set

9-77

insert

Purpose Insert debug point in file

Syntax IDE_Obj.insert(addr,type,timeout)
IDE_Obj.insert(addr)
IDE_Obj.insert(file,line,type,timeout)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.insert(addr,type,timeout) places a debug point at the
provided address of the processor. The IDE_Obj handle defines
the processor that will receive the new debug point. The debug
point location is defined by addr, the desired memory address. The
IDEs support several types of debug points. Refer to your IDE help
documentation for information on their respective behavior. The
following table shows which debug types each IDE supports:

CCS IDE Eclipse IDE MULTI VisualDSP++

'break'
(default)

Yes Yes Yes Yes

'watch' yes Yes

'probe' Yes

The timeout parameter defines how long to wait (in seconds) for the
insert to complete. If this period is exceeded, the routine returns
immediately with a timeout error. In general the action (insert) still
occurs, but the timeout value gave insufficient time to verify the
completion of the action.

9-78

insert

IDE_Obj.insert(addr) same as above, except the timeout value
defaults to the timeout property specified by the IDE_Obj object. Use
IDE_Obj.get('timeout') to examine this default timeout value.

IDE_Obj.insert(file,line,type,timeout) places a debug point at
the specified line in a source file of Eclipse. The FILE parameter gives
the name of the source file. LINE defines the line number to receive
the breakpoint. Eclipse IDEprovides several types of debug points.
Refer to the previous list of supported debug point types. Refer to
Eclipse IDEdocumentation for information on their respective behavior.
IDE_Obj.insert(FILE,LINE) same as above, except the timeout value
defaults to the timeout property specified by the IDE_Obj object. Use
IDE_Obj.get('timeout') to examine this default timeout value.

See Also address

run

9-79

isenabled

Purpose Determine whether RTDX link is enabled for communications

Note Support for isenabled on C5000 and C6000 processors will be
removed in a future version.

Syntax isenabled(rx,'channel')
isenabled(rx)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description isenabled(rx,'channel') returns ans=1 when the RTDX channel
specified by string ’channel’ is enabled for read or write communications.
When 'channel' has not been enabled, isenabled returns ans=0.

isenabled(rx) returns ans=1 when RTDX has been enabled,
independent of any channel. When you have not enabled RTDX you
get ans=0 back.

Important Requirements for Using isenabled

On the processor side, isenabled depends on RTDX to determine and
report the RTDX status. Therefore the you must meet the following
requirements to use isenabled.

1 The processor must be running a program when you query the RTDX
interface.

2 You must enable the RTDX interface before you check the status of
individual channels or the interface.

3 Your processor program must be polling periodically for isenabled
to work.

9-80

isenabled

Note For isenabled to return reliable results, your processor must
be running a loaded program. When the processor is not running,
isenabled returns a status that may not represent the true state of the
channels or RTDX.

Examples With a program loaded on your processor, you can determine whether
RTDX channels are ready for use. Restart your program to be sure
it is running. The processor must be running for isenabled to work,
as well as for enabled to work. This example creates a ticcs object
IDE_Obj to begin.

IDE_Obj.restart
IDE_Obj.run('run');
IDE_Obj.rtdx.enable('ichan');
IDE_Obj.rtdx.isenabled('ichan')

MATLAB software returns 1 indicating that your channel 'ichan'
is enabled for RTDX communications. To determine the mode for
the channel, use IDE_Obj.rtdxto display the properties of object
IDE_Obj.rtdx.

See Also clear, disable, enable

9-81

isreadable

Purpose Determine whether MATLAB software can read specified memory block

Note Support for isreadable(rx,'channel') on C5000 and C6000
processors will be removed in a future version.

Syntax IDE_Obj.isreadable(address,'datatype',count)
IDE_Obj.isreadable(address,'datatype')
isreadable(rx,'channel')

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description IDE_Obj.isreadable(address,'datatype',count) returns 1 if the
processor referred to by IDE_Obj can read the memory block defined
by the address, count, and datatype input arguments. When the
processor cannot read any portion of the specified memory block,
isreadable returns 0. You use the same memory block specification for
this function as you use for the read function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to be read. datatype
defines the format of data stored in the memory block. isreadable
uses the datatype string to determine the number of bytes to read per
stored value. For details about each input parameter, read the following
descriptions.

address — isreadable uses address to define the beginning of the
memory block to read. You provide values for address as either decimal
or hexadecimal representations of a memory location in the processor.
The full address at a memory location consists of two parts: the offset
and the memory page, entered as a vector [location, page], a string,
or a decimal value.

When the processor has only one memory page, as is true for many
digital signal processors, the page portion of the memory address is 0.

9-82

isreadable

By default, ticcs sets the page to 0 at creation if you omit the page
property as an input argument. For processors that have one memory
page, setting the page value to 0 lets you specify all memory locations in
the processor using the memory location without the page value.

Examples of Address Property Values

Property
Value Address Type Interpretation

’1F’ String Location is 31 decimal on
the page referred to by
IDE_Obj.page

10 Decimal Address is 10 decimal on
the page referred to by
IDE_Obj.page

[18,1] Vector Address location 10 decimal on
memory page 1 (IDE_Obj.page
= 1)

To specify the address in hexadecimal format, enter the address
property value as a string. isreadable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. Note that
when you use the string option to enter the address as a hex value, you
cannot specify the memory page. For string input, the memory page
defaults to the page specified by IDE_Obj.page.

count— a numeric scalar or vector that defines the number of datatype
values to test for being readable. To assure parallel structure with
read, count can be a vector to define multidimensional data blocks.
This function always tests a block of data whose size is the product of
the dimensions of the input vector.

datatype — a string that represents a MATLAB software data type.
The total memory block size is derived from the value of count and the
datatype you specify. datatype determines how many bytes to check
for each memory value. isreadable supports the following data types:

9-83

isreadable

datatype
String

Number
of
Bytes/Value Description

'double' 8 Double-precision floating point
values

'int8' 1 Signed 8-bit integers

'int16' 2 Signed 16-bit integers

'int32' 4 Signed 32-bit integers

'single' 4 Single-precision floating point data

'uint8' 1 Unsigned 8-bit integers

'uint16' 2 Unsigned 16-bit integers

'uint32' 4 Unsigned 32-bit integers

Like the iswritable, write, and read functions, isreadable checks
for valid address values. Illegal address values would be any address
space larger than the available space for the processor – 232 for the
C6xxx processor family and 216 for the C5xxx series. When the function
identifies an illegal address, it returns an error message stating that
the address values are out of range.

IDE_Obj.isreadable(address,'datatype') returns 1 if the processor
referred to by IDE_Obj can read the memory block defined by the
address, and datatype input arguments. When the processor cannot
read any portion of the specified memory block, isreadable returns
0. Notice that you use the same memory block specification for this
function as you use for the read function. The data block being tested
begins at the memory location defined by address. When you omit the
count option, count defaults to one.

isreadable(rx,'channel') returns a 1 when the RTDX channel
specified by the string channel, associated with link rx, is configured
for read operation. When channel is not configured for reading,
isreadable returns 0.

9-84

isreadable

Like the iswritable, read, and write functions, isreadable checks for
valid address values. Illegal address values are address spaces larger
than the available space for the processor – 232 for the C6xxx processor
family and 216 for the C5xxx series. When the function identifies an
illegal address, it returns an error message stating that the address
values are out of range.

Note isreadable relies on the memory map option in the IDE. If
you did not properly define the memory map for the processor in the
IDE, isreadable does not produce useful results. Refer to your Texas
Instruments’ Code Composer Studio documentation for information on
configuring memory maps.

Examples When you write scripts to run models in the MATLAB environment
and the IDE, the isreadable function is very useful. Use isreadable
to check that the channel from which you are reading is configured
properly.

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;

% Define read and write channels to the processor linked by IDE_Obj.

open(rx,'ichannel','r');s

open(rx,'ochannel','w');

enable(rx,'ochannel');

enable(rx,'ichannel');

isreadable(rx,'ochannel')

ans=

0

isreadable(rx,'ichannel')

ans=

1

9-85

isreadable

Now that your script knows that it can read from ichannel, it proceeds
to read messages as required.

See Also hex2dec, iswritable, read

9-86

isrtdxcapable

Purpose Determine whether processor supports RTDX

Note Support for isrtdxcapable on C5000 and C6000 processors will
be removed in a future version.

Syntax b=IDE_Obj.isrtdxcapable

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description b=IDE_Obj.isrtdxcapable returns b=1 when the processor referenced
by object IDE_Obj supports RTDX. When the processor does not support
RTDX, isrtdxcapable returns b=0.

Using isrtdxcapable with Multiprocessor Boards

When your board contains more than one processor, isrtdxcapable
checks each processor on the processor, as defined by the IDE_Obj
object, and returns the RTDX capability for each processor on the
board. In the returned variable b, you find a vector that contains the
information for each accessed processor.

Examples Create a link to your C6711 DSK. Test to see if the processor on the
board supports RTDX. It should.

IDE_Obj=ticcs; %Assumes you have one board and it is the C6711 DSK.

b=IDE_Obj.isrtdxcapable

b =

1

9-87

isrunning

Purpose Determine whether processor is executing process

Syntax IDE_Obj.isrunning

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.isrunning returns 1 when the processor is executing a
program. When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to verify that the
program is running.

IDE_Obj.load('program.exe','program')
IDE_Obj.run
IDE_Obj.isrunning

ans =

1
IDE_Obj.halt
IDE_Obj.isrunning

ans =

0

See Also halt

load

9-88

isrunning

run

9-89

isvisible

Purpose Determine whether IDE is visible on desktop

Syntax IDE_Obj.isvisible

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Texas Instruments Code Composer Studio

Description IDE_Obj.isvisible returns 1 if the IDE is running on the desktop
and the window is open. If the IDE is not running or is running in the
background, this method returns 0..

Examples First use a constructor to create an IDE handle object and start the
IDE. To determine if the IDE is visible:

IDE_Obj.isvisible #determine if the ide is visible

ans =

1
IDE_Obj.visible(0) #make the ide invisible
IDE_Obj.isvisible #determine if the ide is visible

ans =

0

Notice that the IDE is not visible on your desktop. Recall that MATLAB
software did not open the IDE. When you close MATLAB software
with the IDE in this invisible state, the IDE remains running in the
background. To close it, do one of the following.

• Open MATLAB software. Create a link to the IDE. Use the new link
to make the IDE visible. Close the IDE.

9-90

isvisible

• Open Microsoft Windows Task Manager. Click Processes. Find and
highlight IDE_Obj_app.exe. Click End Task.

See Also info, visible

9-91

iswritable

Purpose Determine whether MATLAB software can write to specified memory
block

Note Support for iswritable(rx,'channel') on C5000 and C6000
processors will be removed in a future version.

Syntax IDE_Obj.iswritable(address,'datatype’,count)
IDE_Obj.iswritable(address,'datatype')
iswritable(rx,'channel')

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description IDE_Obj.iswritable(address,'datatype’,count) returns 1 if
MATLAB software can write to the memory block defined by the
address, count, and datatype input arguments on the processor
referred to by IDE_Obj. When the processor cannot write to any portion
of the specified memory block, iswritable returns 0. You use the
same memory block specification for this function as you use for the
write function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to write. datatype
defines the format of data stored in the memory block. iswritable
uses the datatype parameter to determine the number of bytes to
write per stored value. For details about each input parameter, read
the following descriptions.

address — iswritable uses address to define the beginning of the
memory block to write to. You provide values for address as either
decimal or hexadecimal representations of a memory location in the
processor. The full address at a memory location consists of two parts:
the offset and the memory page, entered as a vector [location, page], a
string, or a decimal value. When the processor has only one memory

9-92

iswritable

page, as is true for many digital signal processors, the page portion
of the memory address is 0. By default, ticcs sets the page to 0 at
creation if you omit the page property as an input argument.

For processors that have one memory page, setting the page value to 0
lets you specify all memory locations in the processor using the memory
location without the page value.

Examples of Address Property Values

Property
Value Address Type Interpretation

1F String Location is 31 decimal on
the page referred to by
IDE_Obj.page

10 Decimal Address is 10 decimal on
the page referred to by
IDE_Obj.page

[18,1] Vector Address location 10
decimal on memory page
1 (IDE_Obj.page = 1)

To specify the address in hexadecimal format, enter the address
property value as a string. iswritable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. Note that
when you use the string option to enter the address as a hex value, you
cannot specify the memory page. For string input, the memory page
defaults to the page specified by IDE_Obj.page.

count — a numeric scalar or vector that defines the number of
datatype values to test for being writable. To assure parallel structure
with write, count can be a vector to define multidimensional data
blocks. This function always tests a block of data whose size is the total
number of elements in matrix specified by the input vector. If count is
the vector [10 10 10]

9-93

iswritable

IDE_Obj.iswritable(31,[10 10 10])

iswritable writes 1000 values (10*10*10) to the processor. For a
two-dimensional matrix defined with count as

IDE_Obj.iswritable(31,[5 6])

iswritable writes 30 values to the processor.

datatype — a string that represents a MATLAB data type. The total
memory block size is derived from the value of count and the specified
datatype. datatype determines how many bytes to check for each
memory value. iswritable supports the following data types:

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

IDE_Obj.iswritable(address,'datatype') returns 1 if the processor
referred to by IDE_Obj can write to the memory block defined by the
address, and count input arguments. When the processor cannot
write any portion of the specified memory block, iswritable returns
0. Notice that you use the same memory block specification for this
function as you use for the write function. The data block tested begins
at the memory location defined by address. When you omit the count
option, count defaults to one.

9-94

iswritable

Note iswritable relies on the memory map option in the IDE. If
you did not properly define the memory map for the processor in the
IDE, this function does not produce useful results. Refer to your Texas
Instruments’ Code Composer Studio documentation for information on
configuring memory maps.

Like the isreadable, read, and write functions, iswritable checks
for valid address values. Illegal address values would be any address
space larger than the available space for the processor – 232 for the
C6xxx processor family and 216 for the C5xxx series. When the function
identifies an illegal address, it returns an error message stating that
the address values are out of range.

iswritable(rx,'channel') returns a Boolean value signifying
whether the RTDX channel specified by channel and rx, is configured
for write operations.

Examples When you write scripts to run models in MATLAB software and the IDE,
the iswritable function is very useful. Use iswritable to check that
the channel to which you are writing to is indeed configured properly.

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;

% Define read and write channels to the processor linked by IDE_Obj.

open(rx,'ichannel','r');

open(rx,'ochannel','w');

enable(rx,'ochannel');

enable(rx,'ichannel');

iswritable(rx,'ochannel')

ans=

1

iswritable(rx,'ichannel')

ans=

9-95

iswritable

0

Now that your script knows that it can write to 'ichanne'l, it proceeds
to write messages as required.

See Also hex2dec, isreadable, read

9-96

list

Purpose Information listings from IDE

Syntax IDE_Obj.infolist = list('type')
IDE_Obj.infolist = list('type',typename)
list(ff,varname)
infolist = IDE_Obj.list('type')
infolist = IDE_Obj.list('type',typename)

IDEs This function works with the following IDEs:

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description Using list with MULTI

infolist = IDE_Obj.list(type) reads information about your the
IDE project and returns it in infolist. Different types of information
and return formats are possible depending on the input arguments you
supply to the list function call.

Note list does not recognize or return information about variables
that you declare in your code but that are not used or initialized.

The type argument specifies which information listing to return. To
determine the information that list returns, use one of the entries in
the following table.

9-97

list

type String Description

project Return information about the
current project in the IDE

variable Return information about one or
more embedded variables

function Return details about one or more
functions in your project

list returns dynamic the IDE information that you can alter. Returned
listings represent snapshots of the current the IDE configuration
only. Be aware that earlier copies of infolist might contain stale
information.

Also, list may report incorrect information when you make changes
to variables from MATLAB. To report variable information, list uses
the IDE API, which only knows about variables in the IDE. Your
changes from MATLAB, such as changing the data type of a variable,
do not appear through the API and list. For example, the following
operations return incorrect or old data information from list.

infolist = IDE_Obj.list('project') returns a vector of structures
that contain project information in the format shown in the following
table.

infolist Structure Element Description

infolist(1).name Project file name (with path)

infolist(1).primary Configuration file used for the
project. For more information,
refer to new

infolist(1).compileroptions Compiler options string for the
project

9-98

list

infolist Structure Element Description

infolist(1).srcfiles Vector of structures that
describes project source files.
Each structure contains the
name and path for each source
file—infolist(1).srcfiles.name

infolist(1).type Shows the project type, either
project or projlib. For more
information, refer to new.

infolist(2).... ...

infolist(n).... ...

infolist = IDE_Obj.list('variable’) returns a structure of
structures that contains information on all local variables within scope.
The list also includes information on all global variables. If a local
variable has the same symbol name as a global variable, list returns
the local variable information.

infolist = IDE_Obj.list('variable’,varname) returns information
about the specified variable varname.

infolist = IDE_Obj.list(’variable’,varnamelist) returns
information about variables in a list specified by varnamelist. The
information returned in each structure follows the format in the
following table.

infolist Structure Element Description

infolist.varname(1).name Symbol name.

infolist.varname(1).isglobal Indicates whether symbol is global
or local.

infolist.varname(1).location Information about the location of
the symbol.

infolist.varname(1).size Size per dimension.

9-99

list

infolist Structure Element Description

infolist.varname(1).uclass IDE handle class that matches the
type of this symbol.

infolist.varname(1).bitsize Size in bits. More information is
added to the structure depending
on the symbol type.

infolist.(varname1).type Data type of symbol.

infolist.varname(2).... ...

infolist.varname(n).... ...

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = IDE_Obj.list('globalvar') returns a structure that
contains information on all global variables.

infolist = IDE_Obj.list('globalvar',varname) returns a structure
that contains information on the specified global variable.

infolist = IDE_Obj.list('globalvar',varnamelist) returns a
structure that contains information on global variables in the list.
The returned information follows the same format as the syntax
infolist = IDE_Obj.list('variable',...).

infolist = IDE_Obj.list('function') returns a structure that
contains information on all functions in the embedded program.

infolist = IDE_Obj.list('function',functionname) returns
a structure that contains information on the specified function
functionname.

infolist = IDE_Obj.list('function',functionnamelist) returns
a structure that contains information on the specified functions in
functionnamelist. The returned information follows the format below
when you specify option type as function:

9-100

list

infolist Structure Element Description

infolist.functionname(1).name Function name

infolist.functionname(1).filename Name of file where
function is defined

infolist.functionname(1).address Relevant address
information such as
start address and end
address

infolist.functionname(1).funcvar Variables local to the
function

infolist.functionname(1).uclass IDE handle class
that matches
the type of this
symbol—function

infolist.functionname(1).funcdecl Function
declaration—where
information such as
the function return
type is contained

infolist.functionname(1).islibfunc Is this a library
function?

infolist.functionname(1).linepos Start and end line
positions of function

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)... ...

infolist.functionname(n)... ...

To refer to the function structure information, list uses the function
name as the field name.

9-101

list

IDE_Obj.infolist = list('type') returns a structure that contains
information on all defined data types in the embedded program. This
method includes struct, enum and union data types and excludes
typedefs. The name of a defined type is its C struct tag, enum tag
or union tag. If the C tag is not defined, it is referred to by the IDE
compiler as '$faken' where n is an assigned number.

IDE_Obj.infolist = list('type',typename) returns a structure that
contains information on the specified defined data type.

IDE_Obj.infolist = list('type',typenamelist) returns a structure
that contains information on the specified defined data types in the list.
The returned information follows the format below when you specify
option type as type:

infolist Structure Element Description

infolist.typename(1).type Type name

infolist.typename(1).size Size of this type

infolist.typename(1).uclass IDE handle class that
matches the type of
this symbol. Additional
information is added
depending on the type

infolist.typename(2).... ...

infolist.typename(n).... ...

For the field name, list uses the type name to refer to the type
structure information.

The following list provides important information about variable and
field names:

• When a variable name, type name, or function name is not a valid
MATLAB structure field name, list replaces or modifies the name
so it becomes valid.

9-102

list

• In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

• Changing the MATLAB field name does not change the name of the
embedded symbol or type.

Examples
This first example shows list used with a variable, providing
information about the variable varname. Notice that the invalid field
name _with_underscore gets changed to Q_with_underscore. To make
the invalid name valid, list inserts the character Q before the name.

varname1 = '_with_underscore'; % Invalid fieldname.
IDE_Obj.list('variable',varname1);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore
ans=

name: '_with_underscore'
isglobal: 0
location: [1x62 char]

size: 1
uclass: 'numeric'

type: 'int'
bitsize: 16

To demonstrate using list with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, list changes the $ to DOLLAR.

typename1 = '$fake3'; % Name of defined C type with no tag.
IDE_Obj.list('type',typename1);
ans =

DOLLARfake0 : [typeinfo]

9-103

list

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1

uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in the IDE, you see a
listing like the following that includes structures containing details
about your project.

projectinfo=IDE_Obj.list('project')

projectinfo =

name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'

type: 'project'

targettype: 'TMS320C67XX'

srcfiles: [69x1 struct]

buildcfg: [3x1 struct]

Using list with CCS IDE

list(ff,varname) lists the local variables associated with
the function accessed by function object ff. Compare to
IDE_Obj.list('variable','varname') which works the same way to
return variables from ticcs object IDE_Obj.

Note list does not recognize or return information about variables
that you declare in your code but that are not used or initialized.

Some restrictions apply when you use list with function objects. list
generates an error in the following circumstances:

9-104

list

• When varname is not a valid input argument for the function accessed
by ff

For example, if your function declaration is

int foo(int a)

but you request information about input argument b, which is not
defined

list(ff,'b')

MATLAB software returns an error.

• When varname is the same as a variable assigned by MATLAB
software. Usually this happens when you use declare to pass
a function declaration to MATLAB software and the declaration
string does not match the declaration for ff as determined when
you created ff.

In an example that demonstrates this problem, the function
declaration has a name for the first input, a. In the declare call, the
declaration string does not provide a name for the first input, just
a data type, int. When you issue the declare call, MATLAB software
names the first input ML_Input1. If you try to use list to get
information about the input named ML_Input, list returns an error.
Here is the code, starting with the function declaration in your code:

int foo(int a) % Function declaration in your source code

declare(ff,'decl','int foo(int)')

% MATLAB generates a warning that it has assigned the name

% ML_Input to the first input argument

list(ff,'ML_Input') % list returns an error for this call

• When varname does not match the input name in the function
declaration provided in your source code, as compared to the
declaration string you used in a declare operation.

Assume your source code includes a function declaration for foo:

9-105

list

int foo(int a);

Now pass a declaration for foo to MATLAB software:

declare(ff,'decl','int foo(int b)')

MATLAB software issues a warning that the input names do not
match. When you use list on the input argument b,

list(ff,'b')

list returns an error.

• When varname is an input to a library function. list always fails in
this case. It does not matter whether you use declare to provide the
declaration string for the library function.

Note When you call list for a variable in a function object
list(ff,varname)the address field may contain an incorrect address
if the program counter is not within the scope of the function that
includes varname when you call list.

infolist = IDE_Obj.list(type) reads information about your CCS
session and returns it in infolist. Different types of information and
return formats apply depending on the input arguments you supply to
the list function call. The type argument specifies which information
listing to return. To determine the information that list returns, use
one of the following as the type parameter string:

• project— Tell list to return information about the current project
in CCS.

• variable — Tell list to return information about one or more
embedded variables.

• globalvar — Tell list to return information about one or more
global embedded variables.

9-106

list

• function— Tell list to return details about one or more functions
in your project.

• type — Tell list to return information about one or more defined
data types, including struct, enum, and union. ANSI C data type
typedefs are excluded from the list of data types.

Note, the list function returns dynamic CCS information that can
be altered by the user. Returned listings represent snapshots of
the current CCS configuration only. Be aware that earlier copies of
infolist might contain stale information.

Also, list may report incorrect information when you make changes
to variables from MATLAB software. To report variable information,
list uses the CCS API, which only knows about variables in CCS. Your
changes from MATLAB software, such as changing the data type of a
variable, do not appear through the API and list. For example, the
following operations return incorrect or old data information from list.

Suppose your original prototype is

unsigned short tgtFunction7(signed short signedShortArray1[]);

After creating the function object fcnObj, perform a declare operation
with this string to change the declaration:

unsigned short tgtFunction7(unsigned short signedShortArray1[]);

Now try using list to return information about signedShortArray1.

list(fcnObj,'signedShortArray1')

address: [3442 1]
location: [1x66 char]

size: 1
type: 'short *'

bitsize: 16
reftype: 'short'
referent: [1x1 struct]

9-107

list

member_pts_to_same_struct: 0
name: 'signedShortArray1'

The type field reports the original data type short.

You get this is because list uses the CCS API to query information
about any particular variable. As far as the API is concerned, the first
input variable is a short*. Changing the declaration does not change
anything.

infolist = IDE_Obj.list('project') returns a vector of structures
containing project information in the format shown here when you
specify option type as project.

infolist Structure Element Description

infolist(1).name Project file name (with path).

infolist(1).type Project type — project,projlib,
or projext, refer to new

infolist(1).processortype String description of processor
CPU

infolist(1).srcfiles Vector of structures that describes
project source files. Each
structure contains the name
and path for each source file —
infolist(1).srcfiles.name

infolist(1).buildcfg Vector of structures that describe
build configurations, each with
the following entries:

• infolist(1).buildcfg.name
— the build configuration name

• infolist(1).buildcfg.outpath
— the default directory for
storing the build output.

9-108

list

infolist Structure Element Description

infolist(2).... ...

infolist(n).... ...

infolist = IDE_Obj.list('variable’) returns a structure of
structures that contains information on all local variables within scope.
The list also includes information on all global variables. Note, however,
that if a local variable has the same symbol name as a global variable,
list returns the information about the local variable.

infolist = IDE_Obj.list('variable’,varname) returns information
about the specified variable varname.

infolist = IDE_Obj.list(’variable’,varnamelist) returns
information about variables in a list specified by varnamelist. The
information returned in each structure follows the format below when
you specify option type as variable:

infolist Structure Element Description

infolist.varname(1).name Symbol name

infolist.varname(1).isglobal Indicates whether symbol is global
or local

infolist.varname(1).location Information about the location of
the symbol

infolist.varname(1).size Size per dimension

infolist.varname(1).uclass ticcs object class that matches
the type of this symbol

infolist.varname(1).bitsize Size in bits. More information is
added to the structure depending
on the symbol type.

infolist.(varname1).type data type of symbol

infolist.varname(2).... ...

infolist.varname(n).... ...

9-109

list

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = IDE_Obj.list('globalvar') returns a structure that
contains information on all global variables.

infolist = IDE_Obj.list('globalvar',varname) returns a structure
that contains information on the specified global variable.

infolist = IDE_Obj.list('globalvar',varnamelist) returns a
structure that contains information on global variables in the list.
The returned information follows the same format as the syntax
infolist = IDE_Obj.list('variable',...).

infolist = IDE_Obj.list('function') returns a structure that
contains information on all functions in the embedded program.

infolist = IDE_Obj.list('function',functionname) returns
a structure that contains information on the specified function
functionname.

infolist = IDE_Obj.list('function',functionnamelist) returns
a structure that contains information on the specified functions in
functionnamelist. The returned information follows the format below
when you specify option type as function:

infolist Structure Element Description

infolist.functionname(1).name Function name

infolist.functionname(1).filename Name of file where
function is defined

infolist.functionname(1).address Relevant address
information such as
start address and end
address

infolist.functionname(1).funcvar Variables local to the
function

9-110

list

infolist Structure Element Description

infolist.functionname(1).uclass ticcs object class
that matches the
type of this symbol —
function

infolist.functionname(1).funcdecl Function declaration
— where information
such as the function
return type is
contained

infolist.functionname(1).islibfunc Is this a library
function?

infolist.functionname(1).linepos Start and end line
positions of function

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)... ...

infolist.functionname(n)... ...

To refer to the function structure information, list uses the function
name as the field name.

infolist = IDE_Obj.list('type') returns a structure that contains
information on all defined data types in the embedded program. This
method includes struct, enum and union data types and excludes
typedefs. The name of a defined type is its ANSI C struct tag, enum tag
or union tag. If the ANSI C tag is not defined, it is referred to by the
CCS compiler as '$faken' where n is an assigned number.

infolist = IDE_Obj.list('type',typename) returns a structure that
contains information on the specified defined data type.

infolist = IDE_Obj.list('type',typenamelist) returns a structure
that contains information on the specified defined data types in the list.

9-111

list

The returned information follows the format below when you specify
option type as type:

infolist Structure Element Description

infolist.typename(1).type Type name

infolist.typename(1).size Size of this type

infolist.typename(1).uclass ticcs object class that
matches the type of
this symbol. Additional
information is added
depending on the type

infolist.typename(2).... ...

infolist.typename(n).... ...

For the field name, list uses the type name to refer to the type
structure information.

The following list provides important information about variable and
field names:

• When a variable name, type name, or function name is not a valid
MATLAB software structure field name, list replaces or modifies
the name so it becomes valid.

• In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

• Changing the MATLAB software field name does not change the
name of the embedded symbol or type.

Examples
This first example shows list used with a variable, providing
information about the variable varname. Notice that the invalid field
name _with_underscore gets changed to Q_with_underscore. To make
the invalid name valid, list inserts the character Q before the name.

varname1 = '_with_underscore'; % invalid fieldname

9-112

list

IDE_Obj.list('variable',varname1);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore
ans=

name: '_with_underscore'
isglobal: 0
location: [1x62 char]

size: 1
uclass: 'numeric'

type: 'int'
bitsize: 16

To demonstrate using list with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, list changes the $ to DOLLAR.

typename1 = '$fake3'; % name of defined C type with no tag
IDE_Obj.list('type',typename1);
ans =

DOLLARfake0 : [typeinfo]

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1

uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in CCS, you see a listing
like the following that includes structures containing details about your
project.

9-113

list

projectinfo=IDE_Obj.list('project')

projectinfo =

name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'

type: 'project'

processortype: 'TMS320C67XX'

srcfiles: [69x1 struct]

buildcfg: [3x1 struct]

See Also info

9-114

listsessions

Purpose List existing sessions

Syntax list = listsessions
list = listsessions('verbose')

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

Description list = listsessions returns list that contains a listing of all of the
sessions by name currently in the development environment.

list = listsessions('verbose') adds the optional input argument
verbose. When you include the verbose argument, listsessions
returns a cell array that contains one row for each existing session.
Each row has three columns — processor type, platform name, and
processor name.

See Also adivdsp

9-115

load

Purpose Load program file onto processor

Syntax IDE_Obj.load(filename,timeout)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.load(filename,timeout) loads the file specified by the
filename argument to the processor.

The filename argument can include a full path to the file, or the name
of a file in the current working directory of the IDE.

With the VisualDSP++, MULTI, and Code Composer Studio IDEs, you
can use the cd method to check or modify the IDE working directory.

For MULTI, you can add an option argument after filename to specify
options for the ’prepare_target’ command in MULTI debugger. Refer to
the MULTI documentation for information on ’prepare_target.’

Only use load with program files created by the IDE build process.

The timeout argument defines the number of seconds MATLAB waits
for the load process to complete. If the time-out period expires before
the load process returns a completion message, MATLAB generates an
error and returns. Usually the program load process works correctly in
spite of the error message.

If you omit the timeout argument, load uses the timeout
property of the IDE handle object, which you can get by entering
IDE_Obj.get('timeout').

Using load with Eclipse IDE

With Eclipse IDE:

9-116

load

• Before using load, use activate to make the project associated with
the executable file active.

• For the filename argument, use a relative or absolute path to specify
the executable file.

A relative path consists of:

project/configuration/executablefile

An absolute path consists of:

workspace/project/configuration/executablefile

If the workspace is not the active workspace when you use load, the
software generates errors.

If the project is not the active project when you use load, the software
makes the project active.

If the software generates socket server errors when you use methods
with a Eclipse IDE handle object, such as IDE_Obj:

1 Delete the handle object from the MATLAB workspace.

2 Reconnect to the Eclipse IDE using the eclipseide constructor.

Examples IDE_Obj.load(programfile)
run(id)

See Also cd

dir

open

9-117

msgcount

Purpose Number of messages in read-enabled channel queue

Note Support for msgcount on C5000 and C6000 processors will be
removed in a future version.

Syntax msgcount(rx,'channel')

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description msgcount(rx,'channel') returns the number of unread messages in
the read-enabled queue specified by channel for the RTDX interface rx.
You cannot use msgcount on channels configured for write access.

Examples If you have created and loaded a program to the processor, you can
write data to the processor, then use msgcount to determine the number
of messages in the read queue.

1 Create and load a program to the processor.

2 Write data to the processor from MATLAB software.

indata=1:100;
writemsg(IDE_Obj.rtdx,'ichannel', int32(indata));

3 Use msgcount to determine the number of messages available in
the queue.

num_of_msgs = msgcount(IDE_Obj.rtdx,'ichannel')

See Also read, readmat, readmsg

9-118

new

Purpose Create project, library, or build configuration in IDE

Syntax IDE_Obj.new('name','type')

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.new('name','type') creates a project, library, or build
configuration in the IDE.

The name argument specifies the name of the new project, library, or
build configuration

The type argument specifies whether to create a project, library, or
build configuration. The options are:

• 'project' — Executable project. Sometimes this is called a “DSP
executable file”.

• 'projlib' — Library project.

• 'projext' — External make project. Only the CCS IDE supports
this option.

• 'buildcfg' — Build configuration in the active project. Only the
VisualDSP++ and CCS IDEs support this option.

When type is ’project’ or ’projlib’ , name can include the full path to the
new file. You can use the path to differentiate two files with the same
name. If you omit the path, the new method creates the file or project in
the current IDE working directory.

If you omit the type argument, and the name argument does not include
a file extension, type defaults to 'project'.

9-119

new

When type is 'buildcfg', use a unique name to differentiate the build
configuration from other build configurations in the active project.

The new method no longer supports ’text’ as a type argument.

Examples IDE_Obj.new('my_project','project') #Create an IDE project, 'my_project
IDE_Obj.new('my_build_config','buildcfg') #Create a build configuration

See Also activate

close

9-120

open

Purpose Open project in IDE

Note open(,'text') produces an error.

open(,'program') produces an error. Use load instead.

open(,'workspace') produces an error.

Syntax IDE_Obj.open(filename,filetype,timeout)
IDE_Obj.open(myproject)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.open(filename,filetype,timeout) opens a project in the
IDE.

Use the filename argument to specify the file name, including the file
name extension. If the filename does not include a file name extension,
you can specify the file type using the filetype argument. If the file
does not exist in the current project or directory path, MATLAB returns
a warning and returns control to MATLAB.

For the optional filetype argument, you can specify the following
types:

9-121

open

CCS IDE Eclipse IDE MULTI IDE VisualDSP++
IDE

'project'
— Project
files

Yes Yes Yes Yes

'ProjectGroup'
— Project
group files

Yes

'program'
— Target
program file
(executable)

No. Use
load
instead.

Yes

If you omit the filetype argument, filetype defaults to 'project'.
The 'text' and 'workspace' options are no longer supported.

The optional timeout argument determines the number of seconds
MATLAB waits for the IDE to finish opening the file before returning
an error. If you omit the timeout argument, the open method uses
the timeout property of the IDE handle object (IDE_Obj) instead. The
timeout error does not terminate the loading process on the IDE.
Usually the program load process works correctly in spite of the error
message.

Examples IDE_Obj.open(myproject) opens the myproject project in the IDE.

See Also cd

dir

load

new

9-122

profile

Purpose Generate real-time execution or stack profiling report

Syntax IDE_Obj.profile(type,action,timeout)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description Use IDE_Obj.profile(type,action,timeout) to generate real-time
execution or stack profiling report.

Create the IDE_Obj IDE handle object using a constructor function
before you use the profile method.

The type argument determines the type of profile to generate. The
following types are available for the IDEs specified:

CCS IDE Eclipse
IDE

MULTI
IDE

VisualDSP++
IDE

'execution'
— Execution
profiling

Yes Yes, with
limitations.

Yes Yes

'stack'— Stack
profiling

Yes Yes

Currently, using Embedded IDE Link with the Eclipse IDE supports
execution profiling for ARM processors running Linux, as follows:

Windows Platform Linux Platform

Intel x86/Pentium No No

9-123

profile

AMD K5/K6/Athlon No No

ARM No Yes

To get a real-time task execution profile report in HTML and graphical
plot forms, set the type argument to 'execution' and omit the action
argument, which defaults to 'report'. For more information, see
“Profiling Code Execution in Real-Time” on page 5-10.

To prepare the stack memory on the processor for profiling, set the type
argument to 'stack', and set the action argument to 'setup'. This
action writes a repetitive series of known values to the stack memory.
For more information, see “System Stack Profiling” on page 5-18.

After preparing the stack memory, to measure and report the
percentage of stack usage, set the type argument to 'stack', and set
the action argument to 'report'.

If you omit the action argument, action defaults to 'report'.

The optional timeout argument determines the number of seconds
MATLAB waits for the IDE to finish profiling before returning an error.
If you omit the timeout argument, the open method uses the timeout
property of the IDE handle object (IDE_Obj) instead.

Note Real-time task execution profiling works with hardware only.
Simulators do not support the profiling feature.

Examples To use profile to assess how your program executes in real-time,
complete the following tasks with a Simulink model:

1 In a model that has a target preferences block, open the model
configuration parameters (Ctrl+ E) and enable Profile real-time
execution.

9-124

profile

2 Build your model.

IDE_Obj.build

3 Load your program to the processor.

IDE_Obj.load('c:\work\sumdiff.out')

4 For stack profiling, initialize the stack to a known state. (For
execution profiling, skip this step.)

IDE_Obj.profile('stack','setup')

With the setup input argument, profile writes a known pattern
into the addresses that compose the stack. For C6000 processors, the
pattern is A5. For C2000 and C5000 processors, the pattern is A5A5
to account for the address size. As long as your application does not
write the same pattern to the system stack, profile can report the
stack usage correctly.

5 Run the program on the processor.

IDE_Obj.run

6 Stop the running program.

IDE_Obj.halt

7 To get the profiling reports enter one of the following commands:

9-125

profile

IDE_Obj.profile('stack','report') #Get the stack profiling report
IDE_Obj.profile('execution') #Get the execution profiling report

The HTML report contains the sections described in the following table.

Section Heading Description

Worst case task
turnaround times

Maximum task turnaround time for each
task since model execution started.

Maximum number of
concurrent overruns
for each task

Maximum number of concurrent task
overruns since model execution started.

Analysis of profiling
data recorded over
nnn seconds.

Profiling data was recorded over nnn seconds.
The recorded data for task turnaround times
and task execution times is presented in the
table below this heading.

Task turnaround time is the elapsed time between starting and
finishing the task. If the task is not preempted, task turnaround time
equals the task execution time.

Task execution time is the time between task start and finish when the
task is actually running. It does not include time during which the task
may have been preempted by another task.

Note Task execution time cannot be measured directly. Task profiling
infers the execution time from the task start and finish times, and the
intervening periods during which the task was preempted by another
task.

The execution time calculations do not account for processor time
consumed by the scheduler while switching tasks. In cases where
preemption occurs, the reported task execution times overestimate the
true task execution time.

9-126

profile

Task overruns occur when a timer task does not complete before the
same task is scheduled to run again. Depending on how you configure
the real-time scheduler, a task overrun may be handled as a real-time
failure. Alternatively, you might allow a small number of task overruns
to accommodate cases where a task occasionally takes longer than
normal to complete. If a task overrun occurs, and the same task is
scheduled to run again before the first overrun has been cleared,
concurrent task overruns are said to have occurred.

See Also load

run

9-127

pwd

Purpose Working directory used by Eclipse

Syntax wd= IDE_Obj.pwd

IDEs This function works with the following IDEs:

• Eclipse IDE

Description Use wd= IDE_Obj.pwd to get the working directory of the Eclipse IDE.
This value is the same as the Eclipse IDE workspace directory.

Examples To get the Eclipse IDE working directory:

IDE_Obj = eclipseide;
wd = IDE_Obj.pwd

wd =

C:\WINNT\Profiles\rdlugyhe\workspace

See Also dir

9-128

read

Purpose Read data from processor memory

Syntax mem=IDE_Obj.read(address)
mem=IDE_Obj.read(…,datatype)
mem=IDE_Obj.read(…,count)
mem=IDE_Obj.read(…,memorytype)
mem=IDE_Obj.read(…,timeout)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description mem=IDE_Obj.read(address) returns a block of data values from
the memory space of the processor referenced by IDE_Obj. The block
to read begins from the DSP memory location given by the address
argument. The data is read starting from address without regard
to type-alignment boundaries in the processor. Conversely, the byte
ordering defined by the data type is automatically applied.

The address argument is a decimal or hexadecimal representation of a
memory address in the processor. In all cases, the full memory address
consist of two parts:

• The start address

• The memory type

You can define the memory type value can be explicitly using a numeric
vector representation of the address (see below).

Alternatively, the IDE_Obj object has a default memory type value that
is applied if the memory type value is not explicitly incorporated in
the passed address parameter. In DSP processors with only a single

9-129

read

memory type, it is possible to specify all addresses using the abbreviated
(implied memory type) format by setting the IDE_Obj object memory
type value to zero.

Note You cannot read data from processor memory while the processor
is running.

Provide the address argument either as a numerical value that is a
decimal representation of the DSP memory address, or as a string that
read converts to the decimal representation of the start address. (Refer
to function hex2dec in the MATLAB Function Reference. read uses
hex2dec to convert the hexadecimal string to a decimal value).

The examples in the following table demonstrate how read uses the
address parameter:

address
Parameter Value

Description

131082 Decimal address specification. The memory
start address is 131082 and memory type is 0.
This is the same as specifying [131082 0].

[131082 1] Decimal address specification. The memory
start address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as
a string entry. The memory start address is
131082 (converted to the decimal equivalent)
and memory type is 0.

It is possible to specify address as a cell array. You can use a
combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

9-130

read

myaddress1 myaddress1{1}=131072;
myadddress1{2}='Program(PM) Memory';

myaddress2 myaddress2{1}='20000';
myadddress2{2}='Program(PM) Memory';

myaddress3 myaddress3{1}=131072; myaddress3{2}=0;

mem=IDE_Obj.read(…,datatype) where the input argument datatype
defines the interpretation of the raw values read from DSP memory.
Parameter datatype specifies the data format of the raw memory
image. The data is read starting from address without regard to data
type alignment boundaries in the processor. The byte ordering defined
by the data type is automatically applied. This syntax supports the
following MATLAB data types:

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

9-131

read

read does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem=IDE_Obj.read(…,count) adds the count input parameter that
defines the dimensions of the returned data block mem. To read a block
of multiple data values. Specify count to determine how many values
to read from address. count can be a scalar value that causes read
to return a column vector that has count values. You can perform
multidimensional reads by passing a vector for count. The elements in
the input vector of count define the dimensions of the returned data
matrix. The memory is read in column-major order. count defines the
dimensions of the returned data array mem as shown in the following
table.

• n — Read n values into a column vector.

• [m,n]—Read m-by-n values into m by nmatrix in column-major order.

• [m,n,...] — Read a multidimensional matrix m-by-n-by…of values
into an m-by-n-by…array.

To read a block of multiple data values, specify the input argument
count that determines how many values to read from address.

mem=IDE_Obj.read(…,memorytype) adds an optional input argument
memorytype. Object IDE_Obj has a default memory type value 0 that
read applies if the memory type value is not explicitly incorporated
into the passed address parameter.

In processors with only a single memory type, it is possible to specify
all addresses using the implied memory type format by setting the
IDE_Objmemorytype property value to zero.

Using read with MULTI

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

9-132

read

String Entry for
memorytype

Numerical Entry for
memorytype

Processor
Support

’program(pm) memory’ 0 Blackfin and
SHARC

’data(dm) memory’ 1 SHARC

’data(dm) short
word memory’

2 SHARC

’external data(dm)
byte memory’

3 SHARC

’boot(prom) memory’ 4 SHARC

mem=IDE_Obj.read(…,timeout) adds the optional parameter timeout
that defines how long, in seconds, MATLAB waits for the specified
read process to complete. If the time-out period expires before the
read process returns a completion message, MATLAB returns an error
and returns. Usually the read process works correctly in spite of the
error message.

Examples This example reads one 16–bit integer from memory on the processor.

mlvar = IDE_Obj.read(131072,'int16')

131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command
returns 100 32–bit integers from the address 0x20000 and plots the
result in MATLAB.

data = IDE_Obj.read('20000','int32',100)
plot(double(data))

See Also write

9-133

readmat

Purpose Matrix of data from RTDX channel

Note Support for readmat on C5000 and C6000 processors will be
removed in a future version.

Syntax data = readmat(rx,channelname,'datatype',siz,timeout)
data = readmat(rx,channelname,'datatype',siz)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description data = readmat(rx,channelname,'datatype',siz,timeout) reads
a matrix of data from an RTDX channel configured for read access.
datatype defines the type of data to read, and channelname specifies
the queue to read. readmat reads the desired data from the RTDX link
specified by rx.

Before you read from a channel, open and enable the channel for read
access.

Replace channelname with the string you specified when you opened
the desired channel. channelname must identify a channel that you
defined in the program loaded on the processor.

You cannot read data from a channel you have not opened and
configured for read access. If necessary, use the RTDX tools provided in
the IDE to determine which channels exist for the loaded program.

data contains a matrix whose dimensions are given by the input
argument vector siz, where siz can be a vector of two or more elements.
To operate properly, the number of elements in the output matrix data
must be an integral number of channel messages.

When you omit the timeout input argument, readmat reads messages
from the specified channel until the output matrix is full or the global
timeout period specified in rx elapses.

9-134

readmat

Caution If the timeout period expires before the output data matrix is
fully populated, you lose all the messages read from the channel to
that point.

MATLAB software supports reading five data types with readmat:

datatype String Data Format

'double' Double-precision floating point values. 64 bits.

'int16' 16-bit signed integers

'int32' 32-bit signed integers

'single' Single-precision floating point values. 32 bits.

'uint8' Unsigned 8-bit integers

data = readmat(rx,channelname,'datatype',siz) reads a matrix
of data from an RTDX channel configured for read access. datatype
defines the type of data to read, and channelname specifies the queue
to read. readmat reads the desired data from the RTDX link specified
by rx.

Examples In this data read and write example, you write data to the processor
through the IDE. You can then read the data back in two ways — either
through read or through readmsg.

To duplicate this example you need to have a program loaded on the
processor. The channels listed in this example, ichannel and ochannel,
must be defined in the loaded program. If the current program on the
processor defines different channels, replace the listed channels with
your current ones.

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;

open(rx,'ichannel','w');

enable(rx,'ichannel');

9-135

readmat

open(rx,'ochannel','r');

enable(rx,'ochannel');

indata = 1:25; % Set up some data.

IDE_Obj.write(0,indata,30);

outdata=IDE_Obj.read(0,'double',25,10)

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the data into a 5-by-5 array called out_array.

out_array = readmat('ochannel','double',[5 5])

See Also readmsg, writemsg

9-136

readmsg

Purpose Read messages from specified RTDX channel

Note Support for readmsg on C5000 and C6000 processors will be
removed in a future version.

Syntax data = readmsg(rx,channelname,'datatype',siz,nummsgs,timeout)
data = readmsg(rx,channelname,'datatype',siz,nummsgs)
data = readmsg(rx,channelname,datatype,siz)
data = readmsg(rx,channelname,datatype,nummsgs)
data = readmsg(rx,channelname,datatype)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description data = readmsg(rx,channelname,'datatype',siz,nummsgs,timeout)
reads nummsgs from a channel associated with rx. channelname
identifies the channel queue, which must be configured for read access.
Each message is the same type, defined by datatype. nummsgs can be
an integer that defines the number of messages to read from the
specified queue, or all to read all the messages present in the queue
when you call the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. For example, when siz is [m
n], reading 10 messages (nummsgs equal 10) creates 10 m-by-n matrices
in data. Each output matrix in data must have the same number of
elements (m x n) as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports strings that define the type of
data you are expecting, as shown in the following table.

9-137

readmsg

datatype String Specified Data Type

'double' Floating point data, 64-bits
(double-precision).

'int16' Signed 16-bit integer data.

'int32' Signed 32-bit integers.

'single' Floating-point data, 32-bits
(single-precision).

'uint8' Unsigned 8-bit integers.

When you include the timeout input argument in the function, readmsg
reads messages from the specified queue until it receives nummsgs, or
until the period defined by timeout expires while readmsg waits for
more messages to be available.

When the desired number of messages is not available in the queue,
readmsg enters a wait loop and stays there until more messages become
available or timeout seconds elapse. The timeout argument overrides
the global timeout specified when you create rx.

data = readmsg(rx,channelname,'datatype',siz,nummsgs) reads
nummsgs from a channel associated with rx. channelname identifies
the channel queue, which must be configured for read access. Each
message is the same type, defined by datatype. nummsgs can be an
integer that defines the number of messages to read from the specified
queue, or all to read all the messages present in the queue when you
call the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. When siz is [m n], reading 10
messages (nummsgs equal 10) creates 10 n-by-m matrices in data.

Each output matrix in data must have the same number of elements (m
x n) as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports six strings that define the type
of data you are expecting.

9-138

readmsg

data = readmsg(rx,channelname,datatype,siz) reads one data
message because nummsgs defaults to one when you omit the input
argument. readmsgs returns the message as a row vector in data.

data = readmsg(rx,channelname,datatype,nummsgs) reads the
number of messages defined by nummsgs. data becomes a cell array of
row matrices, data = {msg1,msg2,...,msg(nummsgs)}, because siz
defaults to [1,nummsgs]; each returned message becomes one row
matrix in the cell array.

Each row matrix contains one element for each data value in the current
message msg# = [element(1), element(2),...,element(l)] where
l is the number of data elements in message. In this syntax, the read
messages can have different lengths, unlike the previous syntax options.

data = readmsg(rx,channelname,datatype) reads one data
message, returning a row vector in data. All of the optional input
arguments—nummsgs, siz, and timeout—use their default values.

In all calling syntaxes for readmsg, you can set siz and nummsgs to
empty matrices, causing them to use their default values—nummsgs = 1
and siz = [1,l], where l is the number of data elements in the read
message.

Caution If the timeout period expires before the output data matrix is
fully populated, you lose all the messages read from the channel to
that point.

Examples IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;

open(rx,'ichannel','w');

enable(rx,'ichannel');

open(rx,'ochannel','r');

enable(rx,'ochannel');

indata = 1:25; % Set up some data.

IDE_Obj.write(0,indata,30);

outdata=IDE_Obj.read(0,'double',25,10)

9-139

readmsg

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the messages into a 4-by-5 array called
out_array.

number_msgs = msgcount(rx,'ochannel') % Check number of msgs

% in read queue.

out_array = IDE_Obj.rtdx.readmsg('ochannel','double',[4 5])

See Also read, readmat, writemsg

9-140

regread

Purpose Values from processor registers

Syntax reg=IDE_Obj.regread('regname','represent',timeout)
reg = IDE_Obj.regread('regname','represent')
reg = IDE_Obj.regread('regname')

IDEs This function works with the following IDEs:

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description reg=IDE_Obj.regread('regname','represent',timeout) reads the
data value in the regname register of the target processor and returns
the value in reg as a double-precision value. For convenience, regread
converts each return value to the MATLAB double datatype. Making
this conversion lets you manipulate the data in MATLAB. String
regname specifies the name of the source register on the target. The
IDE handle, IDE_Obj, defines the target to read from. Valid entries for
regname depend on your target processor.

Note regread does not read 64-bit registers, like the cycle register on
Blackfin processors.

Register names are not case-sensitive — a0 is the same as A0.

For example, MPC5500 processors provide the following register names
that are valid entries for regname::

Register Names Register Contents

’acc’ Accumulator A register

sprg0 through sprg7 SPR registers

9-141

regread

For example, TMS320C6xxx processors provide the following register
names that are valid entries for regname:

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR,
CSR

Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register pairs

Note Use read (called a direct memory read) to read memory-mapped
registers.

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings:

represent String Description

'2scomp' Source register contains a signed integer value
in two’s complement format. This is the default
setting when you omit the represent argument.

'binary' Source register contains an unsigned binary
integer.

'ieee' Source register contains a floating point 32-bit or
64-bit value in IEEE floating-point format. Use
this only when you are reading from 32 and 64
bit registers on the target.

To limit the time that regread spends transferring data from the target
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the read operation. You might find this

9-142

regread

useful for limiting prolonged data transfer operations. If you omit the
timeout argument, regread defaults to the global time-out defined
in IDE_Obj.

reg = IDE_Obj.regread('regname','represent') does not set the
global time-out value. The time-out value in IDE_Obj applies.

reg = IDE_Obj.regread('regname') does not define the format of
the data in regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned
later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for local variables as well.

One way to see this is to write a line of code that uses the variable and
see if the result is consistent.

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link software .

9-143

regread

Example For MULTI IDE

For the MPC5554 processor, most registers are memory-mapped and
consequently are available using read and write. However, use
regread to read the PC register. The following command demonstrates
how to read the PC register. To identify the target, IDE_Obj is the IDE
handle.

IDE_Obj.regread('PC','binary')

To tell MATLAB what data type you are reading, the string binary
indicates that the PC register contains a value stored as an unsigned
binary integer.

In response, MATLAB displays

ans =

33824

For processors in the Blackfin family, regread lets you access processor
registers directly. To read the value in general purpose register cycles,
type the following function.

treg = IDE_Obj.regread('cycles','2scomp');

treg now contains the two’s complement representation of the value
in A0.

For CCS IDE

For the C5xxx processor family, most registers are memory-mapped
and consequently are available using read and write. However, use
regread to read the PC register. The following command demonstrates
how to read the PC register. To identify the processor, IDE_Obj is
a link for CCS IDE.

IDE_Obj.regread('PC','binary')

9-144

regread

To tell MATLAB software what datatype you are reading, the string
binary indicates that the PC register contains a value stored as an
unsigned binary integer.

In response, MATLAB software displays

ans =

33824

For processors in the C6xxx family, regread lets you access processor
registers directly. To read the value in general purpose register A0,
type the following function.

treg = IDE_Obj.regread('A0','2scomp');

treg now contains the two’s complement representation of the value
in A0.

Now read the value stored in register B2 as an unsigned binary integer,
by typing

IDE_Obj.regread('B2','binary');

See Also read, regwrite, write

9-145

regwrite

Purpose Write data values to registers on processor

Syntax IDE_Obj.regwrite('regname',value,'represent',timeout)
IDE_Obj.regwrite('regname',value,'represent')
IDE_Obj.regwrite('regname',value,)

IDEs This function works with the following IDEs:

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.regwrite('regname',value,'represent',timeout) writes
the data in value to the regname register of the target processor.
regwrite converts value from its representation in the MATLAB
workspace to the representation specified by represent. The represent
input argument defines the format of the data when it is stored in
regname. Input argument represent takes one of three input strings:

represent String Description

'2scomp' Write value to the destination register as
a signed integer value in two’s complement
format. This is the default setting when you
omit the represent argument.

'binary' Write value to the destination register as an
unsigned binary integer.

'ieee' Write value to the destination registers as a
floating point 32-bit or 64-bit value in IEEE
floating-point format. Use this only when
you are writing to 32- and 64-bit registers on
the target.

9-146

regwrite

Note Use write (called a direct memory write) to write memory-mapped
registers.

String regname specifies the name of the destination register on the
target. IDE handle, IDE_Obj defines the target to write value to. Valid
entries for regname depend on your target processor. Register names
are not case-sensitive — a0 is the same as A0.

For example, MPC5500 processors provide the following register names
that are valid entries for regname:

Register Names Register Contents

’acc’ Accumulator A register

sprg0 SPR registers

For example, C6xxx processors provide the following register names
that are valid entries for regname:

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP,
NRP, AMR, CSR

Other general purpose 32-bit registers

A1:A0, A2:A1,...,
B15:B14

64-bit general purpose register pairs

Other processors provide other register sets. Refer to the documentation
for your target processor to determine the registers for the processor.

To limit the time that regwrite spends transferring data to the target
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of

9-147

regwrite

seconds allowed to complete the write operation. You might find this
useful for limiting prolonged data transfer operations.

If you omit the timeout input argument in the syntax, regwrite
defaults to the global time-out defined in IDE_Obj. If the write operation
exceeds the time specified, regwrite returns with a time-out error.
Generally, time-out errors do not stop the register write process. The
write process stops while waiting for the IDE to respond that the write
operation is complete.

IDE_Obj.regwrite('regname',value,'represent') omits the
timeout input argument and does not change the time-out value
specified in IDE_Obj.

IDE_Obj.regwrite('regname',value,) omits the represent input
argument. Writing the data does not reformat the data written to
regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations at any time during
execution. When this temporary storage process occurs, the value of the
variable is temporarily stored somewhere on the stack and returned
later. Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables during intermediate times in
program operation may not get reflected in the register.

This is true for any local variables as well.

One way to see this is to write a line of code that uses the variable and
see if result is consistent.

register int a = 100;
int b;
...

b = a + 2;

9-148

regwrite

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or Embedded IDE Link software.

Examples To write a new value to the PC register on a C5xxx family processor,
enter

IDE_Obj.regwrite('pc',hex2dec('100'),'binary')

specifying that you are writing the value 256 (the decimal value of
0x100) to register pc as binary data.

To write a 64-bit value to a register pair, such as B1:B0, the following
syntax specifies the value as a string, representation, and target
registers.

IDE_Obj.regwrite('b1:b0',hex2dec('1010'),'ieee')

Registers B1:B0 now contain the value 4112 in double-precision format.

See Also read, regread, write

9-149

reload

Purpose Reload most recent program file to processor signal processor

Syntax s = IDE_Obj.reload(timeout)
s = IDE_Obj.reload

IDEs This function works with the following IDEs:

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description s = IDE_Obj.reload(timeout) resends the most recently loaded
program file to the processor. If you have not loaded a program file
in the current session (so there is no previously loaded file), reload
returns the null entry [] in s indicating that it could not load a file to
the processor. Otherwise, s contains the full path name to the program
file. After you reset your processor or after any event produces changes
in your processor memory, use reload to restore the program file to
the processor for execution.

To limit the time the IDE spends trying to reload the program file to the
processor, timeout specifies how long the load process can take. If the
load process exceeds the timeout limit, the IDE stops trying to load the
program file and returns an error stating that the time period expired.
Exceeding the allotted time for the reload operation usually indicates
that the reload was successful but the IDE did not receive confirmation
before the timeout period passed.

s = IDE_Obj.reload reloads the most recent program file, using the
timeout value set when you created link IDE_Obj, the global timeout
setting.

Using reload with Multiprocessor Boards

When your board contains more than one processor, reload calls the
reloading function for each processor represented by IDE_Obj, reloading
the most recently loaded program on each processor.

9-150

reload

This is the same as calling reload for each processor individually
through IDE handle objects for each one.

Examples After you create an object that connects to the IDE, use the available
methods to reload your most recently loaded project. If you have not
loaded a project in this session, reload returns an error and an empty
value for s. Loading a project eliminates the error. First, create an IDE
handle object, such as IDE_Obj, using the constructor for your IDE.

s=IDE_Obj.reload(23)

Warning: No action taken - load a valid Program file before

you reload...

s =

''

openIDE_Obj.('D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt',... #This path varies by IDE

'project')

IDE_Obj.build

IDE_Obj.load('hellodsp.pjt') #This file extension varies by IDE

IDE_Obj.halt

s=IDE_Obj.reload(23)

s =

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

See Also cd, load, open

9-151

remove

Purpose Remove file, project, or breakpoint

Syntax IDE_Obj.remove(filename,filetype)
IDE_Obj.remove(addr,debugtype,timeout)
IDE_Obj.remove(filename,line,debugtype,timeout)
IDE_Obj.remove(all,break)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.remove(filename,filetype) deletes a file from the active
project in the IDE or deletes the project.

IDE_Obj.remove(addr,debugtype,timeout) removes a debug point
from an address in the program.

IDE_Obj.remove(filename,line,debugtype,timeout) removes a
debug point from a line in a source file.

IDE_Obj.remove(all,break) removes all of the breakpoints and waits
for completion.

Inputs IDE_Obj

Enter the name of the IDE link handle for your IDE. Use a
constructor to create an IDE link handle before you use the
remove method. See “Constructor” on page 8-3.

filename

Replace filename with the name of the file you are removing,
or the source file from which you are removing debug points. If
the file is not located in the active project, MATLAB returns a
warning instead of completing the action.

9-152

remove

filetype

To remove a project, enter 'project'. To remove a source file,
enter 'text'.

Default: 'text'

addr

Enter the memory address of the debug point. Enter 'all' to
remove all of the breakpoints.

debugtype

Enter the type of debug point to remove. The IDE provide several
types of debug points. Refer to the IDE help documentation for
information on their respective behavior.

Default: 'break' (breakpoint)

line

Enter the line number of the debug point located in a file.

timeout

Enter a time limit, in seconds, for the method to complete an
action.

Examples After you have a project in the IDE, you can delete files from it using
remove from the MATLAB software command line. For example, build a
project and load the resulting .out file. With the project build complete,
load your .out file by typing

IDE_Obj.load('filename.out')

Now remove one file from your project

IDE_Obj.remove('filename')

You see in the IDE that the file no longer appears.

9-153

remove

See Also add

cd

open

9-154

reset

Purpose Stop program execution and reset processor

Syntax IDE_Obj.reset(timeout)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.reset(timeout) stops the program executing on the processor
and asynchronously performs a processor reset, returning all processor
register contents to their power-up settings. reset returns immediately
after the processor halt.

The optional timeout argument sets the number of seconds MATLAB
waits for the processor to halt. If you omit the timeout argument,
timeout defaults to the timeout value of the IDE handle object.

See Also halt

load

run

9-155

restart

Purpose Reload most recent program file to processor signal processor

Syntax IDE_Obj.restart
IDE_Obj.restart(timeout)

IDEs This function works with the following IDEs:

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.restart issues a restart command in the IDE debugger. The
behavior of the restart process depends on the processor. Refer to the
documentation for your IDE for details about using restart with various
processors.

When IDE_Obj is an array that contains more than one processor, each
processor calls restart in sequence.

IDE_Obj.restart(timeout) adds the optional timeout input
argument. timeout defines an upper limit in seconds on the period
the restart routine waits for completion of the restart process. If the
time-out period is exceeded, restart returns control to MATLAB with a
time-out error. In general, restart causes the processor to initiate a
restart, even if the time-out period expires. The time-out error indicates
that the restart confirmation was not received before the time-out
period elapsed.

See Also halt

isrunning

run

9-156

run

Purpose Execute program loaded on processor

Syntax IDE_Obj.run
IDE_Obj.run('runopt')
IDE_Obj.run(…,timeout)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description IDE_Obj.run runs the program file loaded on the referenced processor,
returning immediately after the processor starts running. Program
execution starts from the location of program counter (PC). Usually,
the PC is positioned at the top of the executable file. However, if you
stopped a running program with halt, the PC may be anywhere in the
program. run starts the program from the PC current location.

If IDE_Obj references more the one processor, each processors calls
run in sequence.

IDE_Obj.run('runopt') includes the parameter runopt that defines
the action of the run method. The options for runopt are listed in the
following table.

9-157

run

runopt string Description

'run' Executes the run and waits to confirm that
the processor is running, and then returns to
MATLAB.

'runtohalt' Executes the run but then waits until the
processor halts before returning. The halt can
be the result of the PC reaching a breakpoint,
or by direct interaction with the IDE, or by the
normal program exit process.

'tohalt' Waits until the running program has halted.
Unlike the other options, this selection does not
execute a run, it simply waits for the running
program to halt.

'main' This option resets the program and executes a
run until the start of function ’main’.

'tofunc' This option must be followed by an extra
parameter funname, the name of the function
to run to:

IDE_Obj.run('tofunc',funcname)

This executes a run from the present PC location
until the start of function funcname is reached.
If funcname is not along the program’s normal
execution path, funcname is not reached and the
method times out.

In the 'run' and 'runtohalt' cases, a halt can be caused by a
breakpoint, a direct interaction with the IDE, or by a normal program
exit.

The following table shows the availability of the runopt options by IDE:

9-158

run

CCS IDE Eclipse IDE MULTI IDE VisualDSP++
IDE

'run' Yes Yes Yes Yes

'runtohalt' Yes Yes Yes Yes

'tohalt' Yes Yes

'main' Yes Yes

'tofunc' Yes Yes

IDE_Obj.run(…,timeout) adds input argument timeout, to allow you
to set the time out to a value different from the global timeout value.
The timeout value specifies how long, in seconds, MATLAB waits for
the processor to start executing the loaded program before returning.

Most often, the 'run' and 'runtohalt' options cause the processor
to initiate execution, even when a timeout is reached. The timeout
indicates that the confirmation was not received before the timeout
period elapsed.

See Also halt

load

reset

9-159

save

Purpose Save file

Note IDE_Obj.save(,'text') produces an error.

Syntax IDE_Obj.save(filename,filetype)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Texas Instruments Code Composer Studio

Description Use IDE_Obj.save(filename,filetype) to save open files in the IDE
project.

The filename argument defines the name of the file to save. When
entering the file name, include the file extension.

The optional filetype argument defines the type of file to save. If
you omit the filetype argument, filetype defaults to 'project'.
Except with VisualDSP++ IDE, 'project' is the only supported option.
Therefore, you can omit the filetype argument in most cases.

CCS IDE Eclipse IDE MULTI IDE VisualDSP++
IDE

'project' Yes Yes Yes Yes

'projectgroup' Yes

Examples To save all project files:

IDE_Obj.save('all')

To save the myproject project:

IDE_Obj.save('myproject')

9-160

save

To save the active project:

IDE_Obj.save([])

For VisualDSP++ IDE, to save all projects in the project groups:

IDE_Obj.save('all','projectgroup')

For VisualDSP++ IDE, to save the myg.dpg project group:

IDE_Obj.save('myg.dpg','projectgroup')

For VisualDSP++ IDE, to save the active project in the project groups:

IDE_Obj.save([],'projectgroup')

See Also adivdsp

close

load

9-161

setbuildopt

Purpose Set active configuration build options

Syntax IDE_Obj.setbuildopt(tool,ostr)
IDE_Obj.setbuildopt(file,ostr)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description Use IDE_Obj.setbuildopt(tool,ostr) to set the build options for a
specific build tool in the current configuration. This replaces the switch
settings that are applied when you invoke the command line tool. For
example, a build tool could be a compiler, linker or assembler. To define
the tool argument correctly, first use the getbuildopt command to
read a list of defined build tools.

If the VisualDSP++ and Code Composer Studio IDEs do not recognize
the ostr argument, setbuildopt sets all switch settings to the default
values for the build tool specified by tool.

If the MULTI IDE does not recognize the ostr argument, the IDE does
not load the project.

Use IDE_Obj.setbuildopt(file,ostr) to configure the build options
for a file you specify with the file argument. The source file must
exist in the active project.

See Also activate

getbuildopt

9-162

symbol

Purpose Program symbol table from IDE

Syntax s = IDE_Obj.symbol

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description s = IDE_Obj.symbol returns the symbol table for the program loaded
in the processor associated with the IDE handle object, IDE_Obj. The
symbol method only applies after you load a processor program file.
s is an array of structures where each row in s presents the symbol
name and address in the table. Therefore, s has two columns; one is the
symbol name, and the other is the symbol address and symbol page.

For CCS IDE, this table shows a few possible elements of s, and their
interpretation.

s Structure Field Contents of the Specified Field

s(1).name String reflecting the symbol entry name.

s(1).address(1) Address or value of symbol entry.

s(1).address(2) Memory page for the symbol entry. For TI
C6xxx processors, the page is 0.

For MULTI IDE, this table shows a few possible elements of s, and
their interpretation.

s Structure Field Contents of the Specified Field

s(1).name String reflecting the symbol entry name.

s(1).address Address or value of symbol entry.

s(1).address Address or value of symbol entry in hex.

9-163

symbol

You can use field address in s as the address input argument to read
and write.

It you use symbol and the symbol table does not exist, s returns empty
and you get a warning message.

Symbol tables are a portion of a COFF object file that contains
information about the symbols that are defined and used by the file.
When you load a program to the processor, the symbol table resides in
the IDE. While the IDE may contain more than one symbol table at a
time, symbol accesses the symbol table belonging to the program you
last loaded on the processor.

Examples Build and load a demo program on your processor. Then use symbol to
return the entries stored in the symbol table in the processor.

s = IDE_Obj.symbol;

s contains all the symbols and their addresses, in a structure you can
display with the following code:

for k=1:length(s),disp(k),disp(s(k)),end;

MATLAB software lists the symbols from the symbol table in a column.

See Also load, run

9-164

ticcs

Purpose Create handle object to interact with CCS IDE

Syntax IDE_Obj = ticcs
IDE_Obj = ticcs('propertyname’,'propertyvalue’,...)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description IDE_Obj = ticcs returns a ticcs object in IDE_Obj that MATLAB
software uses to communicate with the default processor. In the case of
no input arguments, ticcs constructs the object with default values for
all properties. the IDE handles the communications between MATLAB
software and the selected CPU. When you use the function, ticcs starts
the IDE if it is not running. If ticcs opened an instance of the IDE
when you issued the ticcs function, the IDE becomes invisible after
Embedded IDE Link creates the new object.

Note When ticcs creates the object IDE_Obj, it sets the working
directory for the IDE to be the same as your MATLAB software working
directory. When you create files or projects in the IDE, or save files
and projects, this working directory affects where you store the files
and projects.

Each object that accesses the IDE comprises two objects—a ticcs object
and an rtdx object—that include the following properties.

9-165

ticcs

Object Property Name Property Default Description

'apiversion' API version N/A Defines the API version
used to create the link

'proctype' Processor
Type

N/A Specifies the kind of
processor on the board

'procname' Processor
Name

CPU Name given to the
processor on the board
to which this object links

'status' Running No Status of the program
currently loaded on the
processor

'boardnum' Board
Number

0 Number that CCS assigns
to the board. Used to
identify the board

'procnum' Processor
number

0 Number the CCS assigns
to a processor on a board

ticcs

'timeout' Default
timeout

10.0 s Specifies how long
MATLAB software waits
for a response from CCS
after issuing a request.
This also applies when
you try to construct a
ticcs object. The create
process waits for this
timeout period for the
connection to the processor
to complete. If the timeout
period expires, you get an
error message that the
connection to the processor
failed and MATLAB
software could not create
the ticcs object.

9-166

ticcs

Object Property Name Property Default Description

'timeout' Timeout 10.0 s Specifies how long CCS
waits for a response
from the processor after
requesting data

rtdx

'numchannels' Number
of open
channels

0 The number of open
channels using this link

type type Defined
types in the
object

Void,
Float,
Double,
Long,
Int,
Short,
Char

List of the C data types
in the project IDE_Obj
accesses. Use add to
include your C type
definitions to the list

IDE_Obj = ticcs('propertyname’,'propertyvalue’,...) returns a
handle in IDE_Obj that MATLAB software uses to communicate with
the specified processor. CCS handles the communications between the
MATLAB environment and the CPU.

MATLAB software treats input parameters to ticcs as property
definitions. Each property definition consists of a property
name/property value pair.

Two properties of the ticcs object are read only after you create the
object:

• 'boardnum' — the identifier for the installed board selected from
the active boards recognized by CCS. If you have one board, use the
default property value 0 to access the board.

• 'procnum'— the identifier for the processor on the board defined by
boardnum. On boards with more than one processor, use this value to
specify the processor on the board. On boards with one processor, use
the default property value 0 to specify the processor.

9-167

ticcs

Given these two properties, the most common forms of the ticcs
method are

IDE_Obj = ticcs('boardnum',value)

IDE_Obj = ticcs('boardnum',value,'procnum',value)

IDE_Obj = ticcs(...,'timeout',value)

which specify the board, and processor in the second example, as the
processor.

The third example adds the timeout input argument and value to allow
you to specify how long MATLAB software waits for the connection to
the processor or the response to a command to return completed.

Note The output argument name you provide for ticcs cannot begin
with an underscore, such as _IDE_Obj.

You do not need to specify the boardnum and procnum properties when
you have one board with one processor installed. The default property
values refer correctly to the processor on the board.

Note Simulators are considered boards. If you defined both boards and
simulators in the IDE, specify the boardnum and procnum properties
to connect to specific boards or simulators. Use ccsboardinfo to
determine the values for the boardnum and procnum properties.

Because these properties are read only after you create the handle,
you must set these property values as input arguments when you use
ticcs. You cannot change these values after the handle exists. After
you create the handle, use the get function to retrieve the boardnum
and procnum property values.

9-168

ticcs

Using ticcs with Multiple Processor Boards

When you create ticcs objects that access boards that contain more
than one processor, such as the OMAP1510 platform, ticcs behaves
a little differently.

For each of the ticcs syntaxes above, the result of the method changes
in the multiple processor case, as follows.

IDE_Obj = ticcs

IDE_Obj = ticcs('propertyname',propertyvalue)

IDE_Obj = ticcs('propertyname',propertyvalue,'propertyname',...

propertyvalue)

In the case where you do not specify a board or processor:

IDE_Obj = ticcs

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 0

Processor 0 (element 1): TMS470R2127 (MPU, Not Running)

Processor 1 (element 2): TMS320C5500 (DSP, Not Running)

Where you choose to identify your processor as an input argument to
ticcs, for example, when your board contains two processors:

IDE_Obj = ticcs('boardnum',2)

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

9-169

ticcs

IDE_Obj returns a two element object handle with IDE_Obj(1)
corresponding to the first processor and IDE_Obj(2) corresponding to
the second.

You can include both the board number and the processor number in
the ticcs syntax, as shown here:

IDE_Obj = ticcs('boardnum',2,'procnum',[0 1])

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Enter procnum as either a single processor on the board (a single value
in the input arguments to specify one processor) or a vector of processor
numbers, as shown in the example, to select two or more processors.

Support Coemulation and OMAP

Coemulation, defined by Texas Instruments to mean simultaneous
debugging of two or more CPUs, allows you to coordinate your
debugging efforts between two or more processors within one device.
Efficient development with OMAP™ hardware requires coemulation
support. Instead of creating one IDE_Obj object when you issue the
following command

IDE_Obj = ticcs

or your hardware that has multiple processors, the resulting IDE_Obj
object comprises a vector of IDE_Obj objects IDE_Obj(1), IDE_Obj(2),
and so on, each of which accesses one processor on your device, say
an OMAP1510. When your processor has one processor, IDE_Obj is a
single object. With a multiprocessor board, the IDE_Obj object returns
the new vector of objects. For example, for board 2 with two processors,

IDE_Obj = ticcs

9-170

ticcs

returns the following information about the board and processors:

IDE_Obj = ticcs('boardnum',2)

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Checking the existing boards shows that board 2 does have two
processors:

ccsboardinfo

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ---------------

2 OMAP 3.0 Platform Simulator [T ... 0 MPU TMS470R2x

2 OMAP 3.0 Platform Simulator [T ... 1 DSP TMS320C550

1 MGS3 Simulator [Texas Instruments] 0 CPU TMS320C5500

0 ARM925 Simulator [Texas Instru ... 0 CPU TMS470R2x

Examples On a system with three boards, where the third board has one processor
and the first and second boards have two processors each, the following
function:

IDE_Obj = ticcs('boardnum',1,'procnum',0);

returns an object that accesses the first processor on the second board.
Similarly, the function

IDE_Obj = ticcs('boardnum',0,'procnum',1);

returns an object that refers to the second processor on the first board.

9-171

ticcs

To access the processor on the third board, use

IDE_Obj = ticcs('boardnum',2);

which sets the default property value procnum= 0 to connect to the
processor on the third board.

IDE_Obj = ticcs

TICCS Object:

API version : 1.2

Processor type : TMS320C6711

Processor name : CPU_1

Running? : No

Board number : 1

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

IDE_Obj.type % Returns information about the type object

Defined types : Void, Float, Double, Long, Int, Short, Char

See Also ccsboardinfo, set

9-172

visible

Purpose Set whether IDE window is visible while IDE runs

Syntax IDE_Obj.visible(state)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Texas Instruments Code Composer Studio

Description Use IDE_Obj.visible(state) to make the IDE visible on the desktop
or make it run in the background.

To run the IDE in the background so it is not visible on the desktop,
enter '0' for the state argument.

To make the IDE visible on your system desktop, enter '1' for the
state argument.

You can use methods to interact with a IDE handle object, such as
IDE_Obj, while the IDE is in both states, visible and not visible. You
can interact with the IDE GUI while the IDE is visible.

On the Microsoft Windows platform, if you make the IDE visible and
look at the Windows Task Manager:

• While the IDE is visible (state is 1), the IDE appears on the
Applications page of Task Manager, and the IDE_Obj_app.exe
process shows up on the Processes page as a running process.

• While the IDE is not visible (state is 0), the IDE disappears from
the Applications page, but remains on the Processes page, with a
process ID (PID), using CPU and memory resources.

Examples In MATLAB, use the appropriate constructor function to create a IDE
handle object for your IDE. The constructor function creates a handle,
such as IDE_Obj, and starts the IDE.

To get the visiblity status of IDE_Obj, enter:

9-173

visible

IDE_Obj.isvisible

ans =
0

Now, change the visibility of the IDE to 1, and check its visibility again.

IDE_Obj.visible(1)
IDE_Obj.isvisible

ans =
1

If you close MATLAB software while the IDE is not visible, the IDE
remains running in the background. To close it, do one of the following
operations.

• Start MATLAB software. Create a link to the IDE. Use the new link
to make the IDE visible. Close the IDE.

• Open Microsoft Windows Task Manager. Click Processes. Find and
highlight IDE_Obj_app.exe. Click End Task.

See Also isvisible, load

9-174

write

Purpose Write data to processor memory block

Syntax mem=IDE_Obj.write(address,data)
mem=write(…,datatype)
mem=IDE_Obj.write(…,memorytype)
mem=IDE_Obj.write(…,timeout)

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description mem=IDE_Obj.write(address,data) writes data, a collection of values,
to the memory space of the DSP processor referenced by IDE_Obj.

The data argument is a scalar, vector, or array of values to write to
the memory of the processor. The block to write begins from the DSP
memory location given by the input parameter address.

The method writes the data starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering of
the data type is automatically applied.

Note You cannot write data to processor memory while the processor
is running.

The address argument is a decimal or hexadecimal representation
of a memory address in the processor. In all cases, the full memory
address consist of two parts: the start address and the memory type.
The memory type value can be explicitly defined using a numeric vector
representation of the address (see below).

9-175

write

Alternatively, the IDE_Obj object has a default memory type value
which is applied if the memory type value is not explicitly incorporated
into the passed address parameter. In DSP processors with only a
single memory type, by setting the IDE_Obj object memory type value to
zero it is possible to specify all addresses using the abbreviated (implied
memory type) format.

You provide the address argument either as a numerical value that is
a decimal representation of the DSP memory address, or as a string
that write converts to the decimal representation of the start address.
(Refer to function hex2dec in the MATLAB Function Reference that
read uses to convert the hexadecimal string to a decimal value).

To demonstrate how write uses address, here are some examples of
the address argument:

address
Parameter
Value

Description

131082 Decimal address specification. The memory start
address is 131082 and memory type is 0. This is the
same as specifying [131082 0].

[131082 1] Decimal address specification. The memory start
address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as a string
entry. The memory start address is 131082 (converted
to the decimal equivalent) and memory type is 0.

It is possible to specify address as cell array, in which case you can use
a combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

myaddress1 myaddress1{1} = 131072; myadddress1{2} =
'Program(PM) Memory';

9-176

write

myaddress2 myaddress2{1} = '20000'; myadddress2{2} =
'Program(PM) Memory';

myaddress3 myaddress3{1} = 131072; myaddress3{2} = 0;

mem=write(…,datatype) where the datatype argument defines the
interpretation of the raw values written to DSP memory. The datatype
argument specifies the data format of the raw memory image. The
data is written starting from address without regard to data type
alignment boundaries in the DSP. The byte ordering of the data type
is automatically applied. The following MATLAB data types are
supported:

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

write does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

9-177

write

mem=IDE_Obj.write(…,memorytype) adds an optional memorytype
argument. Object IDE_Obj has a default memory type value 0 that
write applies if the memory type value is not explicitly incorporated
into the passed address parameter. In processors with only a single
memory type, it is possible to specify all addresses using the implied
memory type format by setting the value of the IDE_Obj memorytype
property to zero.

mem=IDE_Obj.write(…,timeout) adds the optional timeout argument,
which the number of seconds MATLAB waits for the write process to
complete. If the timeout period expires before the write process returns
a completion message, MATLAB throws an error and returns. Usually
the process works correctly in spite of the error message.

Using write with VisualDSP++ IDE

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

String Entry for
memorytype

Numerical Entry
for memorytype

Processor Support

’program(pm)
memory’

0 Blackfin and SHARC

’data(dm) memory’ 1 SHARC

’data(dm) short
word memory’

2 SHARC

’external
data(dm) byte
memory’

3 SHARC

’boot(prom)
memory’

4 SHARC

9-178

write

Examples Example with VisualDSP++ IDE

These three syntax examples demonstrate how to use write in some
common ways. In the first example, write an array of 16–bit integers to
location [131072 1].

IDE_Obj.write([131072 1],int16([1:100]));

Now write a single-precision IEEE floating point value (32-bits) at
address 2000A(Hex).

IDE_Obj.write('2000A',single(23.5));

For the third example, write a 2-D array of integers in row-major format
(standard C programming format) at address 131072 (decimal).

mlarr = int32([1:10;101:110]);
IDE_Obj.write(131072,mlarr');

See Also hex2dec in the MATLAB Function Reference

read

9-179

writemsg

Purpose Write messages to specified RTDX channel

Note Support for writemsg on C5000 and C6000 processors will be
removed in a future version.

Syntax data = writemsg(rx,channelname,data)
data = writemsg(rx,channelname,data,timeout)

IDEs This function works with the following IDEs:

• Texas Instruments Code Composer Studio

Description data = writemsg(rx,channelname,data) writes data to a channel
associated with rx. channelname identifies the channel queue, which
you must configure for write access beforehand. All messages must be
the same type for a single write operation. writemsg takes the elements
of matrix data in column-major order.

In data = writemsg(rx,channelname,data,timeout), the optional
argument, timeout, limits the time writemsg spends transferring
messages from the processor. timeout is the number of seconds allowed
to complete the write operation. You can use timeout limit prolonged
data transfer operations. If you omit timeout, writemsg applies the
global timeout period defined for the IDE handle object IDE_Obj.

writemsg supports the following data types: uint8, int16, int32,
single, and double.

Examples After you load a program to your processor, configure a link in RTDX
for write access and use writemsg to write data to the processor. Recall
that the program loaded on the processor must define ichannel and the
channel must be configured for write access.

IDE_Obj=ticcs;

rx = IDE_Obj.rtdx;

open(rx,'ichannel','w'); % Could use rx.open('ichannel','w')

9-180

writemsg

enable(rx,'ichannel');

inputdata(1:25);

writemsg(rx,'ichannel',int16(inputdata));

As a further illustration, the following code snippet writes the messages
in matrix indata to the write-enabled channel specified by ichan.
Note again that this example works only when ichan is defined by the
program on the processor and enabled for write access.

indata = [1 4 7; 2 5 8; 3 6 9];
writemsg(IDE_Obj.rtdx,'ichan',indata);

The matrix indata is written by column to ichan. The preceding
function syntax is equivalent to

writemsg(IDE_Obj.rtdx,'ichan',[1:9]);

See Also readmat, readmsg, write

9-181

xmakefilesetup

Purpose Configure Embedded IDE Link to generate makefiles

Syntax

IDEs This function works with the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio

Description You can configure Embedded IDE Link to generate and build your
software using makefiles. This process can use the software build
toolchains, such as compilers and linkers, associated with the preceding
list of IDEs. However, the makefile build process does not use the
graphical user interface of the IDE directly.

Enter xmakefilesetup at the MATLAB command line to configure how
Embedded IDE Link generates makefiles. Use this function:

• Before you build your software using makefiles for the first time.

• If you change the software build toolchain or processor family.

For more instructions and examples, see Chapter 4, “Generating
Makefiles”.

The xmakefile function displays the following dialog box, which
prompts you for information about your make utility and software
build toolchain.

9-182

xmakefilesetup

See Also “Build format” on page 10-5, “Build action” on page 10-7

9-183

xmakefilesetup

9-184

10

Configuration Parameters

10 Configuration Parameters

Embedded IDE Link Pane

In this section...

“Overview” on page 10-4

“Build format” on page 10-5

“Build action” on page 10-7

“Overrun notification” on page 10-10

“Function name” on page 10-12

“PIL block action” on page 10-13

“Configuration” on page 10-15

“Compiler options string” on page 10-17

“Linker options string” on page 10-19

“System stack size (MAUs)” on page 10-21

10-2

Embedded IDE Link Pane

In this section...

“System heap size (MAUs)” on page 10-23

“Profile real-time execution” on page 10-24

“Profile by” on page 10-26

“Number of profiling samples to collect” on page 10-28

“Maximum time allowed to build project (s)” on page 10-30

“Maximum time allowed to complete IDE operations (s)” on page 10-32

“Export IDE link handle to base workspace” on page 10-33

“IDE link handle name” on page 10-35

“Source file replacement” on page 10-36

10-3

10 Configuration Parameters

Overview
Use this pane to configure the following aspects of the Embedded IDE Link
software:

• Run-Time: set the build format to an IDE project or makefile, choose
whether to build and execute the project, or create a PIL project.

• Vendor Tool Chain: set compiler and linker options.

• Code Generation: set options for profiling real-time execution.

• Link Automation: Set the maximum time to build projects and complete
IDE operations. Set a default name for the IDE link handle.

• Diagnostics: Select the type of message to generate when the software
replaces source files.

To get help on an option

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

10-4

Embedded IDE Link Pane

Build format
Defines how Real-Time Workshop software responds when you press Ctrl+B
to build your model.

Settings
Default: Project

Project
Builds your model as an IDE project.

Makefile
Creates a makefile and uses it to build your model.

Note PIL is a feature of the Real-Time Workshop Embedded Coder
product. To use PIL in Embedded IDE Link, you must have a Real-Time
Workshop Embedded Coder license.

Dependencies
Selecting Makefile removes the following parameters:

• Code Generation

- Profile real-time execution

- Profile by

- Number of profiling samples to collect

• Link Automation

- Maximum time allowed to build project(s)

- Maximum time allowed to complete IDE operation(s)

- Export IDE link handle to base workspace

- IDE link handle name

10-5

10 Configuration Parameters

Command-Line Information

Parameter: buildFormat
Type: string
Value: Build | Build_and_execute | Create_project Archive_library
| Create_processor_in_the_loop_project
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Project

Traceability Project

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-6

Embedded IDE Link Pane

Build action
Defines how Real-Time Workshop software responds when you press Ctrl+B
to build your model.

Settings
Default: Build_and_execute

If you set Build format to Project, select one of the following options:

Build_and_execute
Builds your model, generates code from the model, and then compiles
and links the code. After the software links your compiled code, the
build process downloads and runs the executable on the processor.

Create_project
Directs Real-Time Workshop software to create a new project in the IDE.

Archive_library
Invokes the IDE Archiver to build and compile your project, but It does
not run the linker to create an executable project. Instead, the result
is a library project.

Build
Builds a project from your model. Compiles and links the code. Does not
download and run the executable on the processor.

Create_processor_in_the_loop_project
Directs the Real-Time Workshop code generation process to create PIL
algorithm object code as part of the project build.

If you set Build format to Makefile, select one of the following options:

Create_makefile
Creates a makefile. For example, “.mk”.

Archive_library
Creates a makefile and an archive library. For example, “.a” or “.lib”.

Build
Creates a makefile and an executable. For example, “.exe”.

10-7

10 Configuration Parameters

Build_and_execute
Creates a makefile and an executable. Then it evaluates the
execute instruction under the Execute tab in the current XMakefile
configuration.

Dependencies
Selecting Archive_library removes the following parameters:

• Overrun notification

• Function name

• Profile real-time execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

• Reset

• Export IDE link handle to base workspace

Selecting Create_processor_in_the_loop_project removes the following
parameters:

• Overrun notification

• Function name

• Profile real-time execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

• Reset

• Export IDE link handle to base workspace with the option set to
export the handle

10-8

Embedded IDE Link Pane

Command-Line Information

Parameter: buildAction
Type: string
Value: Build | Build_and_execute | Create_project Archive_library
| Create_processor_in_the_loop_project
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Build_and_execute

Traceability Archive_library

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

For more information about PIL and its uses, refer to the “Verifying
Generated Code via Processor-in-the-Loop” topic in the Embedded IDE Link
User’s Guide.

10-9

10 Configuration Parameters

Overrun notification
Specifies how your program responds to overrun conditions during execution.

Settings
Default: None

None
Your program does not notify you when it encounters an overrun
condition.

Print_message
Your program prints a message to standard output when it encounters
an overrun condition.

Call_custom_function
When your program encounters an overrun condition, it executes a
function that you specify in Function name.

Tips

• The definition of the standard output depends on your configuration.

Dependencies
Selecting Call_custom_function enables the Function name parameter.

Setting this parameter to Call_custom_function enables the Function
name parameter.

Command-Line Information

Parameter: overrunNotificationMethod
Type: string
Value: None | Print_message | Call_custom_function
Default: None

10-10

Embedded IDE Link Pane

Recommended Settings

Application Setting

Debugging Print_message or Call_custom_function

Traceability Print_message

Efficiency None

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-11

10 Configuration Parameters

Function name
Specifies the name of a custom function your code runs when it encounters an
overrun condition during execution.

Settings
No Default

Dependencies
This parameter is enabled by setting Overrun notification to
Call_custom_function.

Command-Line Information

Parameter: overrunNotificationFcn
Type: string
Value: no default
Default: no default

Recommended Settings

Application Setting

Debugging String

Traceability String

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-12

Embedded IDE Link Pane

PIL block action
Specifies whether Real-Time Workshop software builds the PIL block and
downloads the block to the processor.

Settings
Default: Create_PIL_block_and_download

Create_PIL_block_build_and_download
Builds and downloads the PIL application to the processor after creating
the PIL block. Adds PIL interface code that exchanges data with
Simulink.

Create_PIL_block
Creates a PIL block, places the block in a new model, and then stops
without building or downloading the block. The resulting project will
not compile in the IDE.

None
Configures model to generate a IDE project that contains the PIL
algorithm code. Does not build the PIL object code or block. The new
project will not compile in the IDE.

Tips

• When you click Build on the PIL dialog box, the build process adds the PIL
interface code to the project and compiles the project in the IDE.

• If you select Create PIL block, you can build manually from the block
right-click context menu.

• After you select Create PIL Block, copy the PIL block into your model to
replace the original subsystem. Save the original subsystem in a different
model so you can restore it in the future. Click Build to build your model
with the PIL block in place.

• Add the PIL block to your model to use cosimulation to compare PIL
results with the original subsystem results. Refer to the demo “Comparing
Simulation and processor Implementation with Processor-in-the-Loop
(PIL)” in the product demos Embedded IDE Link.

10-13

10 Configuration Parameters

• When you select None or Create_PIL_block, the generated project will
not compile in the IDE. To use the PIL block in this project, click Build
followed by Download in the PIL block dialog box.

Dependency
Enable this parameter by setting Build action to
Create_processor_in_the_loop_project.

Command-Line Information

Parameter: configPILBlockAction
Type: string
Value: None | Create_PIL_block |
Create_PIL_block_build_and_download
Default: Create_PIL_block

Recommended Settings

Application Setting

Debugging Create_PIL_block_build_and_download

Traceability Create_PIL_block_build_and_download

Efficiency None

Safety precaution No impact

See Also
For more information, refer to the “Verifying Generated Code via
Processor-in-the-Loop” topic in the Embedded IDE Link User’s Guide.

10-14

Embedded IDE Link Pane

Configuration
Sets the Configuration for building your project from the model.

Settings
Default: Custom

Custom
Lets the user apply a specialized combination of build and optimization
settings.

Custom applies the same settings as the Release project configuration
in IDE, except:

• The compiler options do not use any optimizations.

• The memory configuration specifies a memory model that uses Far
Aggregate for data and Far for functions.

Debug
Applies the Debug Configuration defined by Code Composer Studio
software to the generated project and code. The Compiler options string
becomes -g -d _DEBUG

Release
Applies the Release project configuration defined by Code Composer
Studio software to the generated project and code. Sets the Compiler
options string to -o2.

Dependencies
• Selecting Custom disables the reset options for Compiler options string
and Linker options string.

• Selecting Release sets the Compiler options string to -o2.

• Selecting Debug sets the Compiler options string to -g -d _DEBUG

.

Command-Line Information

Parameter: projectOptions

10-15

10 Configuration Parameters

Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom or Debug

Traceability Custom, Debug, Release

Efficiency Release

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-16

Embedded IDE Link Pane

Compiler options string
Lets you enter a string of compiler options to define your project configuration.

Settings
Default: No default

Tips

• To import compiler string options from the current project in the IDE,
click Get from IDE.

• To reset the compiler options to the default values, click Reset.

• Use spaces between options.

• Verify that the options are valid. The software does not validate the option
string.

• Setting Configuration to Custom applies the Custom compiler options
defined by Embedded IDE Link software. Custom does not use any
optimizations.

• Setting Configuration to Debug applies the _Debug, -g, and -d complier
flags defined by Code Composer Studio software.

• Setting Configuration to Release applies the IDE Release compiler
options and adds the -o2 optimization flag defined by Code Composer
Studio software.

Command-Line Information

Parameter: compilerOptionsStr
Type: string
Value: Custom | Debug | Release
Default: Custom

10-17

10 Configuration Parameters

Recommended Settings

Application Setting

Debugging Custom

Traceability Custom

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-18

Embedded IDE Link Pane

Linker options string
Enables you to specify linker command options that determine how to link
your project when you build your project.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the
options string.

• To import linker string options from the current project in the IDE, click
Get from IDE.

• To reset the linker command options to the default values, click Reset.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: linkerOptionsStr
Type: string
Value: any valid linker option
Default: none

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

10-19

10 Configuration Parameters

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-20

Embedded IDE Link Pane

System stack size (MAUs)
Enter the amount of memory that is available for allocating stack data.

Settings
Default: 8192

Minimum: 0

Maximum: Available memory

• Enter the stack size in minimum addressable units (MAUs)..

• The software does not verify the value you entered is valid. Enter the
correct value.

Dependencies
Setting Build action to Archive_library removes this parameter.

When you set the System target file parameter on the Real-Time
Workshop pane to idelink_ert.tlc or idelink_grt.tlc, the software sets
theMaximum stack size parameter on the Optimization pane to Inherit
from target and makes it non-editable. In that case, the Maximum stack
size parameter compares the value of (System stack size/2) with 200,000
bytes and uses the smaller of the two values.

Command-Line Information

Parameter: systemStackSize
Type: int
Default: 8192

Recommended Settings

Application Setting

Debugging int

Traceability int

10-21

10 Configuration Parameters

Application Setting

Efficiency int

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-22

Embedded IDE Link Pane

System heap size (MAUs)
Allocates memory for the system heap on the processor.

Settings
Default: 8192

Minimum: 0

Maximum: Available memory

• Enter the heap size in minimum addressable units (MAUs)..

• The software does not verify that your size is valid. Be sure that you enter
an acceptable value.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: systemHeapSize
Type: int
Default: 8192

Recommended Settings

Application Setting

Debugging int

Traceability int

Efficiency int

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-23

10 Configuration Parameters

Profile real-time execution
enables real-time execution profiling in the generated code by adding
instrumentation for task functions or atomic subsystems.

Settings
Default: Off

On
Adds instrumentation to the generated code to support execution
profiling and generate the profiling report.

Off
Does not instrument the generated code to produce the profile report.

Dependencies
This parameter adds Number of profiling samples to collect and Profile
by.

Selecting this parameter enables Export IDE link handle to base
workspace and makes it non-editable, since Embedded IDE Link must
create a handle.

Setting Build action to Archive_library or
Create_processor_in_the_loop project removes this parameter.

Command-Line Information

Parameter: ProfileGenCode
Type: string
Value: 'on' | 'off'
Default: 'off'

10-24

Embedded IDE Link Pane

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

For more information about using profiling, refer to the “profile” and “Profiling
Code Execution in Real-Time” topics in the Embedded IDE Link User’s Guide..

10-25

10 Configuration Parameters

Profile by
Defines which execution profiling technique to use.

Settings
Default: Task

Task
Profiles model execution by the tasks in the model.

Atomic subsystem
Profiles model execution by the atomic subsystems in the model.

Dependencies
Selecting Real-time execution profiling enables this parameter.

Command-Line Information

Parameter: profileBy
Type: string
Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting

Debugging Task or Atomic subsystem

Traceability Archive_library

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-26

Embedded IDE Link Pane

For more information about PIL and its uses, refer to the “Verifying
Generated Code via Processor-in-the-Loop” topic in the Embedded IDE Link
User’s Guide.

For more information about using profiling, refer to the “profile” and “Profiling
Code Execution in Real-Time” topics in the Embedded IDE Link User’s Guide..

10-27

10 Configuration Parameters

Number of profiling samples to collect
Specifies the number of profiling samples to collect. Collection stops when
the buffer for profiling data is full.

Settings
Default: 100

Minimum: 1

Maximum: Buffer capacity in samples

Tips

• Data collection stops after collecting the specified number of samples. The
application and processor continue to run.

• Real-time task execution profiling works with hardware only. Simulators
do not support the profiling feature.

Dependencies
This parameter is enabled by Profile real-time execution.

Command-Line Information

Parameter:ProfileNumSamples
Type: int
Value: Positive integer
Default: 100

Recommended Settings

Application Setting

Debugging 100

Traceability No impact

10-28

Embedded IDE Link Pane

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-29

10 Configuration Parameters

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message.

Settings
Default: 1000

Minimum: 1

Maximum: No limit

Tips

• The build process continues even if MATLAB does not receive the
completion message in the allotted time.

• This timeout value does not depend on the global timeout value in a
IDE_Obj object or the Maximum time allowed to complete IDE
operations timeout value.

Dependency
This parameter is disabled when you set Build action to Create_project.

Command-Line Information

Parameter:TBD
Type: int
Value: Integer greater than 0
Default: 100

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

10-30

Embedded IDE Link Pane

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-31

10 Configuration Parameters

Maximum time allowed to complete IDE operations
(s)
specifies how long the software waits for IDE functions, such as read or
write, to return completion messages.

Settings
Default: 10

Minimum: 1

Maximum: No limit

Tips

• The IDE operation continues even if MATLAB does not receive the message
in the allotted time.

• This timeout value does not depend on the global timeout value in a
IDE_Obj object or the Maximum time allowed to build project (s)
timeout value

Command-Line Information

Parameter:TBD
Type: int
Value:
Default: 10

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

10-32

Embedded IDE Link Pane

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

Export IDE link handle to base workspace
Directs the software to export the IDE_Obj object to your MATLAB workspace.

Settings
Default: On

On
Directs the build process to export the IDE_Obj object created to your
MATLAB workspace. The new object appears in the workspace browser.
Selecting this option enables the IDE link handle name option.

Off
prevents the build process from exporting the IDE_Obj object to your
MATLAB software workspace.

Dependency
Selecting Profile real-time execution enables Export IDE link handle
to base workspace and makes it non-editable, since Embedded IDE Link
must create a handle.

Selecting Export IDE link handle to base workspace enables IDE link
handle name.

Command-Line Information

Parameter: exportIDEObj
Type: string
Value: 'on' | 'off'
Default: 'on'

10-33

10 Configuration Parameters

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-34

Embedded IDE Link Pane

IDE link handle name
specifies the name of the IDE_Obj object that the build process creates.

Settings
Default: IDE_Obj

• Enter any valid C variable name, without spaces.

• The name you use here appears in the MATLAB workspace browser to
identify the IDE_Obj object.

• The handle name is case sensitive.

Dependency
This parameter is enabled by Export IDE link handle to base workspace.

Command-Line Information

Parameter: ideObjName
Type: string
Value:
Default: IDE_Obj

Recommended Settings

Application Setting

Debugging Enter any valid C program variable name,
without spaces

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-35

10 Configuration Parameters

Source file replacement
Selects the diagnostic action to take if Embedded IDE Link software detects
conflicts that you are replacing source code with custom code.

Settings
Default: warn

none
Does not generate warnings or errors when it finds conflicts.

warning
Displays a warning.

error
Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

Tips

• The build operation continues if you select warning and the software
detects custom code replacement. You see warning messages as the build
progresses.

• Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your
custom code replacement files.

• Select none when the replacement process is correct and you do not want to
see multiple messages during your build.

• The messages apply to Real-Time Workshop Custom Code replacement
options as well.

Command-Line Information

Parameter: DiagnosticActions
Type: string
Value: none | warning | error
Default: warning

10-36

Embedded IDE Link Pane

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency warning

Safety precaution error

See Also
For more information, refer to the “Embedded IDE Link Pane Parameters”
topic in the Embedded IDE Link User’s Guide.

10-37

10 Configuration Parameters

10-38

Index

IndexA
activate 9-2
add 9-4
address 9-7
animate 9-15
Archive_library 3-44
asynchronous scheduling 3-4

B
block limitations using model reference 3-45
block recommendations 2-17
blocks

use in target models 2-17
blocks to avoid in models 2-17
boards, selecting 3-3

C
C6000 model reference 3-43
ccsboardinfo 9-17
configuration parameters

pane 10-4
buildAction 10-7
buildFormat 10-5
Compiler options string: 10-17
configPILBlockAction 10-13
DiagnosticActions 10-36
Export IDE link handle to base

workspace: 10-33
Function name: 10-12
gui item name 10-28
IDE link handle name: 10-35
ideObjBuildTimeout 10-30
ideObjTimeout 10-32
Linker options string: 10-19
overrunNotificationMethod 10-10
Profile real-time execution 10-24
profileBy 10-26

projectOptions 10-15
System heap size (MAUs): 10-23
System stack size (MAUs): 10-21

configure 9-30
configure the software timer 7-33
connect to simulator 9-66
CPU clock speed 7-33
create custom target function library 3-42
current CPU clock speed 7-33
Custom Demo block 7-99
custom source code 3-32

D
datatypemanager 9-33
debug operation

new 9-119
disable 9-50
discrete solver 3-29

E
Embedded IDE Link™

build format 2-9
code generation options 2-9

Embedded IDE Link™ software
introduction 1-2

enable 9-56
execution in timer-based models 3-9
execution profiling

subsystem 5-13
task 5-11

F
file and project operation

new 9-119
fixed-step solver 3-29
flush 9-58

Index-1

Index

G
generate optimized code 2-9
get symbol table 9-163

H
heap size, set heap size 2-12

I
IDE status 9-90
Idle Task block 7-2
info 9-70
intrinsics. See target function library
isenabled 9-80
isreadable 9-82
isrtdxcapable 9-87
issues, using PIL 5-9
isvisible 9-90
iswritable 9-92

L
list 9-97
list object 9-97
list variable 9-97

M
manage data types 9-33
MATLAB® API 1-5
matrix, read from RTDX 9-134
Memory Allocate block 7-5
Memory Copy block 7-11
model execution 3-4
model reference 3-43

about 3-43
Archive_library 3-44
block limitations 3-45
modelreferencecompliant flag 3-46
setting build action 3-44

Target Preferences blocks 3-45
using 3-44

model schedulers 3-4
modelreferencecompliant flag 3-46
msgcount 9-118

O
optimization, processor specific 2-9

P
PIL cosimulation

overview 5-3
PIL issues 5-9
processor configuration options

build action 2-9
overrun action 2-11

processor function library. See target function
library

processor information, get 9-70
processor specific optimization 2-9
profiling execution

by subsystem 5-13
by task 5-11

program file, reload 9-150
project generation

selecting the board 3-3

R
read register 9-141
readmat 9-134
readmsg 9-137
Real-Time Workshop solver options 3-29
regread 9-141
regwrite 9-146
reload 9-150
replacing generated code 3-32
replacing linker directives 3-32
RTDX

Index-2

Index

isenabled 9-80
isrtdxcapable 9-87
message count 9-118
read message 9-137
readmat 9-134
writemsg 9-180

RTDX channel, flush 9-58
RTDX message count 9-118
RTDX, disable 9-50
RTDX, enable 9-56

S
select blocks for models 2-17
selecting boards 3-3
set heap size 2-12
set stack size 2-12
set visibility 9-173
simulator

connect to 9-66
solver option settings 3-29
source code replacement 3-32
stack size, set stack size 2-12
symbol 9-163
symbol table, getting symbols 9-163
synchronous scheduling 3-9

T
table of blocks to avoid in models 2-17
target function library

assessing execution time after selecting a
library 3-39

create a custom library 3-42
optimization 3-36
seeing the library changes in your generated

code 3-40
selecting the library to use 3-38
use in the build process 3-37
using with link software 3-36
viewing library tables 3-42
when to use 3-38

Target Preferences blocks in referenced
models 3-45

Target Preferences/Custom Board block 7-30
Target Support Package™

create Simulink® model for targeting 2-16
TFL. See target function library
ticcs 9-165
timer, configure 7-33
timer-based models, execution 3-9
timer-based scheduler 3-9
timing 3-4

V
view IDE 9-90
viewing target function libraries 3-42
visibility, setting 9-173
visible 9-173

W
write register 9-146
writemsg 9-180

Index-3

	toc
	Getting Started
	Product Overview
	Overview
	Key Features
	Introduction
	Generating IDE Projects
	Generating Makefiles
	Automating IDE Tasks
	Verifying Models Running on Targets
	Optimizing Models

	Using this Guide
	Installation and Configuration

	Preparing Models for Embedded Deployment
	Setting Target Preferences
	What are Target Preferences Blocks?
	Locating a Target Preferences Block
	Configuring a Target Preferences Block for a Supported Processor
	Adding a Target Preferences Block to Your Model
	Examples of Configuring Target Preferences

	Setting Configuration Parameters for Embedded IDE Link
	What are Configuration Parameters?
	Setting Model Configuration Parameters
	Real-Time Workshop Pane
	Embedded IDE Link Pane Parameters

	Working with Block Libraries
	Simulink Models and Targeting
	Creating Your Simulink Model for Targeting
	Blocks to Avoid in Your Models

	Generating IDE Projects
	Introducing Project Generator
	Project Generation
	Schedulers and Timing
	Configuring Models for Asynchronous Scheduling
	Before
	After
	Algorithm Inside the Function Call Subsystem Block

	Cases for Using Asynchronous Scheduling
	Idle Task
	Hardware Interrupt Triggered Task

	Using Scheduling Blocks to Control Code Execution
	Comparing Synchronous and Asynchronous Interrupt Processing
	Using Synchronous Scheduling
	Using Asynchronous Scheduling
	Multitasking Scheduler Examples
	Three Odd-Rate Tasks Without Preemption and Overruns
	Two Tasks with the Base-Rate Task Overrunning, No Preemption
	Two Tasks with Sub-Rate 1 Overrunning Without Preemption
	Three Even-Rate Tasks with Preemption and No Overruns
	Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rat
	Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overrun
	Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-

	Project Generator Tutorial
	Creating the Model
	Adding the Target Preferences Block to Your Model
	Specify Configuration Parameters for Your Model
	Setting Solver Parameters
	Setting Real-Time Workshop Code Generation Parameters
	Setting Embedded IDE Link Parameters
	Building Your Project

	Setting Code Generation Parameters for Processors
	Using Custom Source Files in Generated Projects
	Preparing to Replace Generated Files With Custom Files
	Determining the Name of the File to Replace
	Creating the Replacement File

	Replacing Generated Source Files with Custom Files When You Gene

	Optimizing Embedded Code with Target Function Libraries
	About Target Function Libraries and Optimization
	Code Generation Using the Target Function Library

	Using a Processor-Specific Target Function Library to Optimize C
	Process of Determining Optimization Effects Using Real-Time Prof
	Reviewing Processor-Specific Target Function Library Changes in
	Reviewing Code Manually
	Using Model-to-Code Tracing
	Using a File Differencing Scheme

	Reviewing Target Function Library Operators and Functions
	Creating Your Own Target Function Library

	Model Reference
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring processors to Use Model Reference

	Generating Makefiles
	Using Makefiles to Generate and Build Software
	Overview
	Configuring Your Model to Use Makefiles
	Choosing an XMakefile Configuration
	Working with Microsoft Visual Studio

	Building Your Model

	Making an XMakefile Configuration Operational
	Example: Creating an XMakefile Configuration for the Intel Compi
	Overview
	Create a Configuration
	Modify the Configuration
	Make Utility
	Compiler
	Linker
	Archiver
	Other tabs

	Test the Configuration

	XMakefile User Configuration Dialog Box
	Active
	Template
	Configuration
	Display operational configurations only
	User Templates
	User Configurations

	Make Utility
	Make utility
	Arguments
	Optional include

	Compiler
	Compiler
	Arguments
	Source
	Header
	Object

	Linker
	Linker
	Arguments
	File extensions for library files
	Generated output file extension

	Archiver
	Archiver
	Arguments
	Generated output file extension

	Pre-build
	Enable Prebuild Step
	Prebuild tool
	Arguments

	Post-build
	Enable Postbuild Step
	Postbuild tool
	Arguments

	Execute
	Use Default Execute Tool
	Execute tool
	Arguments

	Tool Directories
	Installation

	Verifying Generated Code
	What Is Verification?
	Verifying Generated Code via Processor-in-the-Loop
	What is Processor-in-the-Loop?
	When to Use Top-Model PIL
	When to Use the PIL Block

	Using the Top-Model PIL Approach
	Setting Model Configuration Parameters to Generate the PIL Appli
	Running the Top Model PIL Application

	Using the PIL Block Approach
	Preparing Your Model to Generate a PIL Block
	Setting Model Configuration Parameters to Generate the PIL Appli
	Creating the PIL Block Application from a Model Subsystem
	Running Your PIL Application to Perform Cosimulation and Verific

	Definitions
	Other Aspects of PIL
	PIL Issues and Limitations
	Generic PIL Issues
	Real-Time Workshop grt.tlc-Based Targets Not Supported

	Profiling Code Execution in Real-Time
	Overview
	Profiling Execution by Tasks
	Profiling Execution by Subsystems

	System Stack Profiling
	Overview
	Profiling System Stack Use

	Block Reference
	Block Library: idelinklib_common

	Blocks — Alphabetical List
	Function Reference
	Setup
	Constructor
	File and Project Operations
	Processor Operations
	Debug Operations
	Data Manipulation
	Status Operations
	Grouped by IDE
	Altium TASKING
	Analog Devices VisualDSP++
	Eclipse IDE
	Green Hills MULTI
	Texas Instruments Code Composer Studio

	Functions — Alphabetical List
	Support Coemulation and OMAP

	Configuration Parameters
	Embedded IDE Link Pane
	Overview
	To get help on an option

	Build format
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build action
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Overrun notification
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Function name
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	PIL block action
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Configuration
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Compiler options string
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Linker options string
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System stack size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System heap size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile real-time execution
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile by
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of profiling samples to collect
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to build project (s)
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to complete IDE operations (s)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Export IDE link handle to base workspace
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	IDE link handle name
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Source file replacement
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Index

	tables
	IDE support for type
	All Supported File Types and Extensions
	Examples of Address Property Values
	Examples of Address Property Values

